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Preface

The development, characterization, and technological exploitation of new materials,
particularly as components in ‘smart’ systems, are key challenges for chemistry and
physics in the next millennium. New substances and composites including nanos-
tructured materials are envisioned for innumerable areas including magnets for the
communication and information sector of our economy. Magnets are already an
important component of the economy with worldwide sales of approximately $30
billion, twice that of the sales of semiconductors. Hence, research groups worldwide
are targeting the preparation and study of new magnets especially in combination
with other technologically important properties, e. g., electrical and optical proper-
ties.

In the past few years our understanding of magnetic materials, thought to be
mature, has enjoyed a renaissance as it is being expanded by contributions from
many diverse areas of science and engineering. These include (i) the discovery of
bulk ferro- and ferrimagnets based on organic/molecular components with critical
temperature exceeding room temperature, (ii) the discovery that clusters in high,
but not necessarily the highest, spin states due to a large magnetic anisotropy or
zero field splitting have a significant relaxation barrier that traps magnetic flux en-
abling a single molecule/ion (cluster) to act as a magnet at low temperature; (iii) the
discovery of materials exhibiting large, negative magnetization; (iv) spin-crossover
materials that can show large hysteretic effects above room temperature; (v) pho-
tomagnetic and (vi) electrochemical modulation of the magnetic behavior; (vii) the
Haldane conjecture and its experimental realization; (viii) quantum tunneling of
magnetization in high spin organic molecules; (viii) giant and (ix) colossal magne-
toresistance effects observed for 3-D network solids; (x) the realization of nanosize
materials, such as self organized metal-based clusters, dots and wires; (xi) the de-
velopment of metallic multilayers and the spin electronics for the applications. This
important contribution to magnetism and more importantly to science in general
will lead us into the next millennium.

Documentation of the status of research, ever since William Gilbert’s de Magnete
in 1600, provides the foundation for future discoveries to thrive. As one millennium
ends and another beacons the time is appropriate to pool our growing knowledge
and assess many aspects of magnetism. This series entitled Magnetism: Molecules to
Materials provides a forum for comprehensive yet critical reviews on many aspects
of magnetism that are on the forefront of science today.

Joel S. Miller Marc Drillon
Salt Lake City, USA Strasbourg, France
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1 Bimetallic Magnets: Present and Perspectives

Corine Mathonière, Jean-Pascal Sutter, and Jatinder V. Yakhmi

1.1 Introduction

An important branch of the molecular magnetism deals with molecular systems with
bulk physical properties such as long-range magnetic ordering. The first molecu-
lar compounds with spontaneous magnetization below a critical temperature were
reported during the eighties [1, 2]. These pioneering reports encouraged many re-
search groups in organic, inorganic, or organometallic chemistry to initiate activity
on this subject, and many new molecule-based magnets have been designed and
characterized. A tentative classification can arise from the chemical nature of the
magnetic units involved in these materials – organic- or metal-based systems and
mixed organic–inorganic compounds. Of materials based only on magnetic metal
complexes, several families such as the oxamato, oxamido, oxalato-bridged com-
pounds and cyanide-bridged systems play an important role in the field of molecular
magnetism. This contribution focuses mainly on molecule-based magnets involving
oxamato and oxamido complexes. The most extensively used spin carriers are 3d
transition metal ions. The magnetic interactions between these ions are now well
understood and enable the rational synthesis of materials. This aspect will be high-
lighted in the first part of this contribution. The heavier homologs from the second
and third series have been envisaged only recently for the construction of hetero-
bimetallic materials. In the second part of this chapter we will briefly discuss the
very encouraging first results obtained with such ions.

In 1995 Olivier Kahn wrote a paper reviewing the magnetism of heterobimetallic
compounds [3]. An important part of this review was devoted to finite polynuclear
compounds, which can be considered as models for the study of exchange interac-
tions. Magnetic ordering is a three dimensional property, however, and the design of
a molecule-based magnet requires control of the molecular architecture in the three
directions of space. The results obtained in bimetallic supra-molecular materials by
our group and others show different features:

• the dimensionality can be controlled by the stoichiometry of the reagents during
the synthesis or by the number of solvation molecules;

1 This chapter is dedicated to the memory of Professor Olivier Kahn who passed away suddenly on
December 8, 1999. Many of the illustrative examples used in this contribution are results obtained
by his group.
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2 1 Bimetallic Magnets: Present and Perspectives

• in a chemical system, the magnetic properties can be modulated by the nature
of metallic ions;

• these systems can be studied by alternative techniques which are complementary
of the magnetic studies.

In the following text we will describe briefly the structures and magnetic proper-
ties of the compounds by emphasizing their main features. In particular, the mag-
netic properties will be summarized in terms of the exchange parameter J, the or-
dering temperature, TC for a ferro(or ferri)magnetic material or TN for an antifer-
romagnetic material, and the coercive field Hcoerc, i. e. the magnetic field applied
to cancel the permanent magnetization present in the material, which characterizes
the hardness of a magnet.

1.2 Bimetallic Magnetic Materials Derived
from Oxamato-based Complexes

1.2.1 Dimensionality and Magnetic Properties

1.2.1.1 CuII Precursors

The general chemical strategy for the construction of bimetallic systems is based on
the use of the bis-bidentate metal-complex as a complex-ligand. The bis-oxamato Cu
precursors (shown in Scheme 1) and disymmetrical CuII complexes with two types
of bridging units (oxamato and carboxylato) (shown in Scheme 2) have mainly been
used for the preparation of extended bimetallic compounds.

x

yO N

O O

Cu

N O

O O

2-

Scheme 1

Scheme 2
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[Cu(pba)]2− (Table 1) was first described by Nonoyoma in 1976 [4] and at the end
of the eighties it was used by Kahn and coworkers to design high-spin molecules,
namely (L M)2Cu(pba) with M = MnII, NiII, L being a terminal ligand or bimetallic
chains MCu(pba) [5, 6]. [Cu(opba)]2− was later synthesized by Stumpf; this precur-
sor enables the preparation of compounds with different dimensionality – high-spin
molecules [7], chain and ladders compounds, honeycomb layers, and interlocked
compounds (Table 1) [8].

These Cu precursors were chemically modified through their ligand skeleton. The
pba and opba ligands have been modified in two directions (Table 1):
• in the bridging moiety, by substituting the O (R1 and R2) atoms by N atoms,

to increase the overlap of magnetic orbitals, because of the more pronounced
diffuse character of the 2p(N) orbitals (next section);

• around the bridging moiety, by changing the nature of the R unit to modify the
crystal packing of the molecules.

1.2.1.2 Mechanisms of Exchange Coupling

In the bimetallic systems obtained from reaction of CuII compounds with other
transition metal ions, M, the magnetic ordering is ferrimagnetic. This means that
exchange interactions between Cu and M (SCu �= SM with S referring to the spin
state of the metal) in the systems are a result of overlap between magnetic orbitals.
If M has no orbital contribution (magnetically isotropic ion), the mechanism of
the dominant CuII–M interactions through an oxamato (or oxamido)-bridge is well
understood. In fact, both the planar structure of the CuII complex and the four
peripheral oxygen atoms give to the compound its efficient mediating character in
terms of magnetic connector. The CuII ion has one unpaired electron occupying
a dxy orbital which is delocalized toward the nearest nitrogen and oxygen atoms
and also toward the external oxygen atoms (Scheme 1). This magnetic orbital may
overlap strongly with magnetic orbitals of other ions linked to the CuII brick by the
four external oxygen atoms. Structural investigations of several compounds in this
family have shown that the distances between the two metals, CuII–M, is approxi-
mately 5.3 Å. Going further in the quantification of the exchange interactions, the
magnetic data can be interpreted in the paramagnetic regime with a phenomeno-
logical Hamiltonian in a spin-spin coupling scheme such as H = −JSCu ·SM, where
J is the isotropic interaction parameter. For example, in CuII–MnII pairs, J has
been found to be approximately −30 cm−1. On the basis of experimental studies
(magnetism and neutron diffraction) and theoretical investigations (DFT calcula-
tions), the dominant mechanism is spin delocalization from the CuII ion towards
the planar skeleton of the N(O)–C–O bridging part of the ligand. A similar situa-
tion occurs for the CuII–NiII pair, with additional NiII local anisotropy treated with
the phenomenological zero-field splitting. The resulting J is higher, and has been
estimated at J = −100 cm−1. For other couples, for instance CuII–CoII, CuII–FeII,
and CuII–LnIII, the orbital contribution renders the interpretation of magnetic data
using the simple scheme described above extremely difficult. For these species only
qualitative interpretation of magnetic data has been achieved in order to determine
the nature of exchange interactions between CuII and the other ion.
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1.2.1.3 Discrete Molecules

One of the first high-spin molecules was prepared in 1988. By using [Cu(pba)]2−
as the core and [Mn(Me6-[14]ane-N4)]2+ as a peripheral complex it is possible to
obtain a trinuclear linear CuMn2 species [5]. No single crystal was obtained, and a
structure in agreement with the magnetic properties was proposed. The compound
has ferrimagnetic behavior with an irregular spin state structure resulting from the
antiferromagnetic interaction between the peripheral Mn ions (SMn = 5/2) and
the middle Cu ion (SCu = 1/2). The low-temperature magnetic behavior is char-
acteristic of a high-spin ground state equal to S = 9/2. Efforts were later made
to obtain structural information for such species [9]. Let us mention the result of
Liao’s group. They succeeded in isolating crystals of binuclear and trinuclear com-
pounds with the NiII ion (SNi = 1) [7]. The compounds are obtained by reaction of
CuL2− (L = pba, pbaOH and opba) with NiL2+, L being tetraamine ligands, the
final compounds having formula (L Ni)CuL or (L Ni)2CuL2+ (the trinuclear species
is shown in Fig. 1). The compounds have been magnetically characterized, and have
the expected ferrimagnetic behavior with an S = 3/2 ground state with a zero-field
splitting.

An other interesting example has been described by Ouahab and Kahn with
the opbaCl2 ligand (Table 1) and its CuII complex [10]. The reaction of the CuII

precursor with ethylenediamine, en, and MnII in the solvent DMSO led to an un-
precedented trinuclear species MnIIICuIIMnIII. The structure of this species has
been resolved (Fig. 2), and reveals that:

• the MnIII has replaced the CuII in the cavity N2O2 of the opbaCl2 ligand;
• the formation of the [Cu(en)2]2+ complex, because of the strong affinity of the

en for the CuII; and, finally,
• the self-assembling process between the anionic [Mn(opbaCl2)]− and the cationic

[Cu(en)2]2+ complexes.

Fig. 1. Structure of the trinuclear cation [{Ni(cth)2}Cu(pba)]2+ [7] (reproduced with per-
mission; Copyright 2001, the American Chemistry Society).
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Fig. 2. Structure of the trinuclear species
Cu(en)2Mn(Cl2opba)(H2O)2 [10] (reproduced
with permission; Copyright 2001, the American
Chemistry Society).

The linkage between the two complexes is realized through apical Cu–O bonds
of length 2.454 Å. The delocalization of the spin density of the CuII towards the
oxygen atoms in the apical position has been postulated to be negligibly small, and
the magnetic data have been interpreted in terms of zero-field splitting of the MnIII

ion.
More recently, Journaux et al. obtained an interesting dinuclear Na4[Cu2(bis-

pba)] species by use of the bis-tetradentate ligand denoted bis-pba (Table 1 and
Scheme 3) [11]. They succeeded in isolating dinuclear Na4[Cu2(bis-pba)] species,
with weak intramolecular ferromagnetic interactions between the two CuII (J ≈
1 cm−1). The reaction of this dinuclear compound with four equivalent external com-
plexes such as [Ni(cyclam)]2+ (cyclam = 1,4,8,11-tetraazacyclotetradecane) in ace-
tonitrile or with [Cu(tmen)]2+ (tmen = N , N , N , N -tetramethylethylenediamine)
in water affords hexanuclear anionic compounds of formula {Ni(cyclam)}4Cu2(bis-
pba) and {Cu(tmen)(H2O)}2{Cu(tmen)}2{Cu2(bis-pba)}, respectively [12]. The
structure of the Cu6 species is shown in Fig. 3. It is made of two symmetry-related
oxamato-bridged trinuclear units connected through the central carbon. In these
hexanuclear species, the interactions through the oxamato bridge were found to be
equal to J = −342 cm−1 for Cu6 and −82 cm−1 for Cu2Ni4. The weak ferromag-
netic coupling between the two CuII ions within the dinuclear synthon was masked
by intermolecular interactions and/or local anisotropy.
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Scheme 3

O7 O8
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N1N2 O1

O2 N4
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O4

Cu3
Cu2Cu1

O7 O8

Cu2
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Cu3

Fig. 3. Structure of the cationic hexanuclear unit [{Cu(tmen)(H2O)}2{Cu(tmen)}2{Cu2(bis-
pba)}]4+ [12] (reproduced with permission from Journal of Inorganic Chemistry).

1.2.1.4 One-dimensional Systems: Chain Compounds

When the dianionic Cu precursor is reacted with a 3d metal cation, Mn+, under sto-
ichiometric conditions 1:1, neutral compounds of formula MCuLxS are obtained,
S standing for solvent molecules. Different bimetallic chains have been structurally
and magnetically described. The bimetallic chains with M = MnII are described in
detail in the review written in 1995 by Kahn. A typical example of a linear bimetallic
chain is presented in Fig. 4. The magnetic properties of the chain compounds are well
understood in the paramagnetic region (5–300 K), and are analyzed with theoreti-
cal models for ferrimagnetic one-dimensional systems, because of antiferromagnetic
coupling between two different spins (SMn = 5/2 and SCu = 1/2) [13]. Below 5 K
magnetic ordering occurs because of interchain interactions, which are governed
by the crystal packing of the chains in the lattice. Actually, only one compound
has ferromagnetic (F) ordering, with TC = 4.6 K, namely MnCu(pbaOH)(H2O)3,
which was the first molecule-based magnet belonging to the family described here
[2]. Other compounds have antiferromagnetic (AF) ordering with TN between 1.8 K
and 5 K. The occurrence of F or AF magnetic ordering in these chain compounds is
related to the interchain metal-metal separations of the type Mn–Cu for ferromag-
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Cu Mn Cu

Carbon Oxygen Nitrogen

Fig. 4. MnCu(pba)(H2O)3 · 2H2O (top)
Structure of the chain compound (bot-
tom) Spin density map deduced from
polarized neutron diffraction data.

nets and Mn–Mn and Cu–Cu for antiferromagnets [14]. Some of these antiferro-
magnets behave as metamagnets, where a small applied magnetic field (between 1 or
2 kOe) can overcome the weak antiferromagnetic interchain interactions to induce
a long-range ferromagnetic-like ordering. Note that for a few compounds there is
no evidence of cooperative magnetic phenomena down to 1.8 K. They behave as
quasi-perfect one-dimensional ferrimagnets; one example is MnCu(opba)(DMSO)3
which has a zigzag chain structure [15].

Two interesting features of these bimetallic chain compounds can be mentioned in
this section. First, the size of crystals (up to 15 mm3) of [MnCu(pba)(H2O)3] · 2H2O
(Fig. 4) enabled the performance of further physical studies such as polarized neu-
tron diffraction (p. n. d.) and optical spectroscopy (Section 1.2.4) [16, 17]. Secondly,
the magnetic properties of compounds of formula [MnCu(pbaOH)] · xH2O are
strongly dependent on the water composition. Just above we mentioned the com-
pound MnCu(pbaOH)(H2O)3, which behaves as a magnet at 4.6 K. It is possible to
isolate another phase of this compound, MnCu(pbaOH)(H2O)3 · 2H2O, which has
three-dimensional antiferromagnetic ordering in zero fields with TN = 2.4 K. The
bimetallic chains in both compounds are identical but in the latter the hydrogen-
bond network developed by the non-coordinated water molecules imposes crystal
packing with short interchain Mn–Mn and Cu–Cu separations, inducing antiferro-
magnetic interactions between the chains. The compound also has metamagnetic
behavior, because a field of 0.9 kOe is sufficient to overcome these interchain in-
teractions giving rise to a ferromagnetic state [14]. When MnCu(pbaOH)(H2O)3 is
heated to 130◦C one water molecule bound in the apical position of the copper co-
ordination sphere is removed, and the new compound, MnCu(pbaOH)(H2O)2, has
long range ferromagnetic ordering at TC = 30 K [18]. The release of H2O reduces
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the interchain distances, and this enhances the interchain exchange interactions by
a factor of 40. In Section 1.2.3 we will encounter other examples of magnetic or-
dering controlled by the water content of the material; these lead to the concept
of magnetic sponges.

1.2.1.5 Two-dimensional Systems: Layered Honeycomb Compounds

We have seen that magnetic ordering of chain compounds can occur, and is strongly
related to solvent molecules which impose the organization of the crystal packing.
The interchain magnetic interactions remain weak, however, and magnetic order-
ing occurs at low temperature. To increase these temperatures, chemists have to
build compounds with higher dimensionality. This section is devoted to bidimen-
sional compounds, which are prepared with the same building blocks as the one-
dimensional compounds but with different stoichiometries. Almost all of these 2D
compounds behave as ferrimagnets. Experimentally the long-range magnetic order-
ing is revealed by the temperature dependencies of the field-cooled magnetization
(FCM, which is measured by cooling the sample within a very small field, usually
H < 20 Oe) and by the in-phase (χ ′

M) and out-of-phase (χ ′′
M) molar susceptibili-

ties in the ac mode. The non-zero value of χ ′′
M indicates the presence of permanent

magnetic moment within the sample. The critical temperatures, denoted TC, are de-
termined by the extremum of the derivative curve d(FCM)/dT or by the maximum
of the χ ′

M curve, if it exists. In both instances they correspond to the temperatures
where remnant magnetization vanishes, the latter is measured by turning the field
off at low temperature and then warming up the sample in strictly zero field. The
field dependence of the magnetization measured at low temperature enables the
determination of the coercive field.

The reaction of (NBu4)2[Cu(opba)] with MnII in DMSO in 3:2 stoichiometry
yielded a compound of formula (NBu4)2[Mn2{Cu(opba)}3,4DMSO] · 2H2O, which
is a ferrimagnet below TC = 15 K [15]. When MnII is replaced by CoII, TC increases
to 29 K [19]. Unfortunately, no crystals were obtained for these compounds; a lay-
ered honeycomb structure was proposed for the anionic part (Fig. 5), for compatibil-
ity with the chemical formulas of the compounds and, of course, with the magnetic
ordering occurring for temperatures higher than for the chain compounds. A theo-
retical approach was developed for a two-dimensional hexagonal model to derive
an analytical expression for the molar magnetic susceptibility, χM, in the paramag-
netic regime (40–300 K) using high-temperature expansions of the partition function
[20]. Comparison of theory and experiment led to determination of the exchange
parameter as J = −33.1 cm−1, which is close to values obtained for related finite
or chain compounds.

The occurrence of magnetic ordering in these two dimensional compounds
might result from intralayer magnetic anisotropy and/or interlayer interactions. The
cations are probably located between the anionic layers, and it is possible that the
magnetic properties of these materials can be tuned by changing the size of the
cations and/or slight modification of the ligand. Table 2 summarizes the different
results. The magnetic behavior of the Mn derivatives strongly depends on the size
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Fig. 5. Structure of a honeycomb layer.

of the cations. For large cations such as [Ru(bipy)3]2+ magnetic ordering occurs at
lower temperature [21], and for small cations such as alkali metals, the compounds
have weak ferromagnetism [19], because of competition between antiferromagnetic
interlayer interactions and ferrimagnetic intralayer interactions. In contrast, all the
Co compounds are ferrimagnets with TC ≈ 30 K, irrespective of the cation. Such
similar magnetic properties strongly suggests that the compounds adopt the same
structure.

For some of these compounds XANES and EXAFS studies showed that each
MnII is surrounded by three CuL complexes [22]. Journaux et al. compared experi-
mental magnetic data with two theoretical models. One is based on a two-sublattice
molecular field model in the mean field approximation, and is assumed valid for
three-dimensional structures. The second already introduced above is adapted for
hexagonal honeycomb layers. For all the examples studied the second approach
led to good fitting of the magnetic data, and gave J values in good agreement with
those deduced previously for other compounds of lower dimensionality. These struc-
tural and magnetic results lead to the conclusion that all these compounds are two-
dimensional, with a honeycomb layered structure.

Finally, introduction of a cation with an intrinsic property, for instance chiral-
ity for cations such as nicot and ambutol or the paramagnetic [FeCp∗

2]+, has been
envisaged [23, 24]. Chirality was introduced with the objective of inducing the for-
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Table 2. Magnetic properties for the family of oxamato(oxamido)-bridged honeycomb lay-
ered ferrimagnets of formula CatI

2[MII
2 (CuL)3] and CatII[MII

2 (CuL)3].

MII L Cat J (cm−1) TC (K) Hcoerc (Oe) Ref.

Mn opba NBu+
4 −32 15 <10 [15]

NEt+4 17 <10 [19]
NMe+

4 TN = 15 K [19]
K+ TN = 15 K [19]
Na+ TN = 15 K [19]
FeCp∗+

2 14 <20 [24]
CoCp∗+

2 13 <20 [24]
nicot2+ TN = 15 K [23]
ambutol+ TN = 15 K [23]
Ru(bipy)2+

3 12 [21]
PPh+

4 −31.8 11.5 10 [22]
Meopba PPh+

4 −32.6 13 10 [22]
Me2opba PPh+

4 −30.5 8 10 [22]
PhMe2opbox PPh+

4 12.5 5 [26]
PhPr2opbox PPh+

4 11.5 5 [26]
PhBu2opbox PPh+

4 13.5 5 [26]

Co opba NBu+
4 30.5 1400 (5 K) [15]

NMe+
4 33 [19]

Cs+ 34 [19]
K+ 33.5 2000 (5 K) [19]
Na+ 31.5 [19]
FeCp∗+

2 27 3500 [24]
CoCp∗+

2 27.5 5300 [24]

Notes: Cp∗ = C5Me5, nicot is the chiral N,N-dimethylnicotinium species and ambutol is the
chiral dimethylhydroxymethyl-2-ethylhydroxymethyl-1-propylammonium species.

mation of three dimensional coordination polymers in the same manner as for the
3D lattices obtained for the oxalato-bridged family discussed in another chapter of
this series [25]. The magnetic cation was expected to increase the magnetic inter-
action between the layers, but the results were slightly disappointing, because no
significant modifications of the magnetic properties were observed. These observa-
tions are, however, informative because they suggest future directions which might
afford three-dimensional molecule-based magnets. In fact, a chiral cation can in-
duce the formation of magnetic helicates only if it correctly fills the cavities formed
by the three dimensional lattice. This obviously did not happen with the examples
given above. Another way of filling the cavities of the anionic network is to use
bulky ligands. The results obtained with the bulkier PhR2opbox ligands (Table 1)
designed on the basis of this strategy are not conclusive [26]. Note that the com-
pound obtained with [FeCp∗

2]+ enabled a Mössbauer study which revealed that the
FeIII ion begins to feel an internal field only at temperatures well below TC. This
clearly indicates that the cation between the layers is not directly involved in the
long range magnetic ordering.
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1.2.1.6 Interpenetrated Two-dimensional Networks: Interlocked Compounds

To increase the dimensionality further Kahn and coworkers imagined the use of
a cation which would be capable of bridging two transition metal ions and which
would be paramagnetic, thus increasing the magnetic density of the compounds.
Cations belonging to the nitronyl nitroxide family, in which the unpaired electron
is equally shared between the two N-O groups, have been envisaged (Scheme 4).

Scheme 4

The methyl and ethylpyridinium radical cations were used with success [27-29].
The structures of compounds with the formula (Etrad)2[M2{Cu(opba)}3] have been
investigated by single crystal X-ray studies for M = Mn, Co, and by powder X-ray
studies for M = Mg, Ni [30, 31]. All the compounds are fully interlocked with a
general architecture made of two equivalent two-dimensional networks, denoted
A and B, each consisting of parallel honeycomb layers. Each layer is made up of
edge-sharing hexagons with an MII ion at each corner and a CuII ion at the middle
of each edge (Fig. 5). The layers stack above each other in a graphite-like fashion,
with a mean interlayer separation of 14.8 Å. The A and B networks are almost
perpendicular to each other, and interpenetrate in such a way that at the center of
each hexagon belonging to a network is located a CuII ion belonging to the other
network (Fig. 6). The networks are further connected through the radical cations;
this affords infinite chains of the kind CuA–Etrad–CuB–Etrad, where CuA and CuB
belong to the A and B network, respectively.

Fig. 6. Interpenetration of the two networks A and B.
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Fig. 7. FCM curve (•) and its derivative d(FCM)/dT (top) and in-phase χ ′
M (�) and out-of-

phase χ ′′
M (�) plots of ac susceptibilities (bottom) against T for (Etrad)2[Mn2{Cu(opba)}3].

Besides the aesthetic aspect of the structures, the compounds also had interesting
magnetic properties. They behave as ferrimagnets with Curie temperatures in the
range of 22–37 K (Figs. 7 and 8 and Table 3). The χ ′

M and χ ′′
M curves can have two

different general shapes, (i) a shape similar that of the FCM with χ ′
M � χ ′′

M as shown
in Fig. 7, or (ii) a peak-like shape as shown in Fig. 8 with maximum values for very
close temperatures. These differences are related to the coercivity of the material,
case (i) applies for a very weak coercivity (Hcoerc < 10 Oe) and case (ii) when a

Table 3. Magnetic properties for the family of oxamato(oxamido)-bridged interlocked fer-
rimagnets of formula (r-Rad)2[MI I

2 (CuL)3], where r = methyl- or ethylpyridinium.

MII L Cat TC (K) Hcoerc (Oe) Ref.

Mn opba Merad 23 <10 [15]
Etrad 22.8 <10 [29]

Co opba Merad 34 3000 (5 K) [15]
Etrad 37 8500–24 000 [29]

Ni opba Etrad 28 500 [30, 31]
Mg opba Etrad Paramagnet Paramagnet [31]
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Fig. 8. In-phase χ ′
M (�) and out-of-phase χ ′′

M (�) ac susceptibilities (bottom) for
(Etrad)2[Co2{Cu(opba)}3]. The insert shows the field dependence of the magnetization for
two samples with the largest (•) crystals and smallest (�) crystals.

significant coercivity (Hcoerc > 1000 Oe) exists. As a result of the formation of the
3D networks the Curie temperatures are effectively increased by up to 8 K for the
Mn and Co compounds, compared with the layered compounds (Table 2). But the
increase of TC seems weak with regard to the three-dimensional connectivity of the
compound. In fact, the interaction between the interlocked layers is weak, and has
been estimated in (Etrad)2[Mg2{Cu(opba)}3]. Because the Mg ion is diamagnetic,
magnetic interactions occur only along the CuA–Etrad–CuB–Etrad chains. They are
ferromagnetic, as expected between CuII and a nitroxide group occupying the apical
position. Neglecting intermolecular interactions, the magnetic data were analyzed
by a chain model for S = 1/2 spins, leading to an exchange parameter of J = 8 cm−1,
which is four times weaker in absolute values than the intralayer interaction [31].

1.2.1.7 Ladder and Honeycomb Lattices in 3d–4f Systems

The chemistry of the bis-bidentate Cu-oxamato complexes is not limited to the re-
action with 3d transition metals. Impressive extended structures have been obtained
when [Cu(opba)]2− was reacted with lanthanide ions, LnIII. The first compounds
of this kind were reported in 1992 for the LnIII–Cu(pba) system [32]. Two different
structures have been described for compounds of general formula Ln2{Cu(pba)}3.
One consists of discrete ladders of Ln going from Tb to Yb, and Y, an architecture
similar to that of Ln2{Cu(opba)}3 shown in Fig. 9. The second results from con-
densed ladder-like motifs with a rearrangement of the rungs and is formed with Ln
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Fig. 9. Structure of the ladder-type compound Ln2{Cu(opba)}3.

belonging to the beginning of the Ln series. Interestingly, compounds of formula
Ln2{Cu(opba)}3 crystallize with the same structure all along the lanthanide series.
This structure consists of infinite ladders, parallel to each others, as shown in Fig. 9.
The side-pieces of a ladder are made of Ln2{Cu(opba)}3 units, and the rungs are
made of Cu(opba) units that bridge two Ln atoms belonging to either side-pieces
of the ladder. When seen along the direction of a rung the two edges of a ladder
are in an eclipsed conformation. Each LnIII ion is surrounded by three Cu(opba)
units, its coordination sphere being completed by three water molecules.

As mentioned in the Section 1.2.1.2, the magnetic properties of compounds
containing paramagnetic Ln ions are usually difficult to interpret. They are gov-
erned both by the thermal population of the Stark components of LnIII and by
the LnIII–CuII interaction. To extract information on the nature of the LnIII–CuII

interaction the magnetic behavior of Ln2{Cu(opba)}3 can be compared with that
of Ln2Zn(opba)3 for each LnIII ion. Wide-angle X-ray scattering (WAXS) experi-
ments strongly suggest that the ZnII-containing compounds have also a ladder-type
structure [33]. For a Ln2Zn(opba)3 compound in which the only magnetic ion is
LnIII, the magnetic properties are entirely governed by the thermal population of
the Stark components of LnIII. The purpose here is not to enter into the details of
the procedure but to restrict ourselves to reporting some results [34].

The simplest example is that where the lanthanide element is gadolinium. The
ground state of GdIII is a pure SGd = 7/2 spin state, orbitally non-degenerate.
The GdIII–CuII interaction is weakly ferromagnetic. All the spins of the material



16 1 Bimetallic Magnets: Present and Perspectives

Table 4. Nature of the magnetic interaction between LnIII and MII ions, as determined by
the experimental method described in the text.

LnI I I Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb
Compound

Ni3Ln2 af af af af af F F F f
Cu3Ln2 af af af af af F F F f
CuLn pairs AF AF AF F F F F F AF
Kahn’s prediction

Overall AF interaction Overall F interaction

AF – antiferromagnetic interaction, F – ferromagnetic interaction, af – proposed antiferro-
magnetic interaction, f – proposed ferromagnetic interaction.

tend to align along the same direction, and actually Gd2{Cu(opba)}3 has long-range
ferromagnetic ordering at 1.78 K [35]. The TbIII–CuII and DyIII–CuII interactions
were also found to be ferromagnetic, and the appearance of long-range magnetic
ordering was also established for Tb2{Cu(opba)}3 and Dy2{Cu(opba)}3 at 0.81 K
and 0.74 K, respectively, by specific heat measurements [36]. For all the other LnIII

ions, the interaction is not ferromagnetic; it is either not detectable by the magnetic
technique or very weakly antiferromagnetic. An ambiguity remains for TmIII.

A similar series of compounds has been obtained with the Ni(opba) precursor.
In the resulting Ln2Ni(opba)3 compounds, the four-coordinated environment of the
Ni ion was completed by a solvent molecule (DMSO in this case), as confirmed by
EXAFS studies [37]. In the new geometry (pyramidal or octahedral), the Ni center
is paramagnetic. When the procedure described above is used to extract magnetic
information about the LnIII–NiII pair, ferromagnetic interactions are found in NiII–
GdIII, NiII–TbIII, NiII–DyIII pairs and perhaps in NiII–HoIII, and antiferromagnetic
interactions are obtained for NiII–LnIII with Ln going from Ce to Eu. These con-
clusions, similar to those obtained for Ln–Cu pairs (except for Tm), are in line with
the predictions of Kahn (Table 4) [38]. Results obtained for other Ln–Cu pairs seem
in agreement with our results [39]. It has been pointed out that geometrical consid-
erations do not seem to be crucial to the nature of exchange interaction between
Ln and a 3d ion, irrespective to what happens in 3d–3d pairs.

Finally, one can notice that the stoichiometry Ln2{Cu(opba)}3 might also corre-
spond to two-dimensional compounds with a honeycomb-like structure, reminiscent
of that shown in Fig. 5, and such a structure has actually been found [40]. During the
synthetic process, however, partial hydrolysis of the oxamato groups into oxalato
groups occurs. The formula of this compound is Nd2Cu(opba)0.5(ox)3 · 9DMF with
ox = oxalato and DMF = dimethylformamide. The NdIII ions occupy the corners
of the edge-sharing hexagons and the CuII ions occupy the middles of the edges.
These edges are statistically made of Cu(opba) and Cu(ox)2 groups, with a proba-
bility of 0.5 for each. The NdIII are surrounded by nine oxygen atoms, six arising
from the bidentate oxamato or oxalato groups and three from DMF molecules. The
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magnetic properties for this and related compounds with the Nd2Cu3 stoichiome-
try are rather unexpected. All the compounds have a quasi-non-magnetic ground
state characterized by a χMT value tending to zero as the temperature approaches
absolute zero. This situation results from an almost perfect compensation between
the two NdIII and the three CuII local magnetic moments. Such compensation can
occur if the ratio ρ = gNd/gCu is equal to a critical value which has been calcu-
lated as 1.73; gNd and gCu are the Zeeman factors of the local Kramers doublets
of NdIII and CuII, respectively. If the NdIII and CuII magnetic moments coupled
antiferromagnetically, but without accidental compensation, the behavior would be
ferrimagnetic, and χMT would not tend to zero at low temperature.

1.2.2 Modulation of the Magnetic Properties

So far we have focused only on the temperature at which the magnetic ordering
occurs, and the possibilities of increasing this temperature by controlling the di-
mensionality of the covalent skeleton of the compounds. This section is devoted to
an other aspect of magnetic materials and their memory-effect characteristics. The
memory effect is associated with a property of the material with hysteretic behavior
with regard to a given perturbation. We already mentioned that the Co-containing
magnets described in Sections 1.2.1.5 and 1.2.1.6 have TC values almost twice as high
as their Mn analogs. They also have large magnetic hysteresis loops with rather large
coercive field values (Hcoerc > 1000 Oe at 5 K), whereas the Mn compounds have
rather weak coercive fields (Hcoerc < 10 Oe). The former can be regarded as hard
magnets, the latter as soft magnets. The coercive field for the interlocked Co com-
pound also depends on the average size of the crystals, and values as large as 24 kOe
can be reached for smaller crystallites (insert in Fig. 8).

It is well established that the coercivity of a magnet depends to some extent
on morphologic factors such as grain size and shape, and the defects within the
crystallites which would favor pinning of the ferromagnetic domain walls. The key
property of a molecule-based magnet with a large value of coercivity seems, how-
ever, to be a chemical – the presence of magnetic centers with unquenched orbital
momentum in the structure. In our example MnII is magnetically isotropic ion and
cannot, therefore, prevent the domains from rotating freely when a field is applied.
Replacing MnII, with an orbital singlet state (6A1), by CoII, with an orbital triplet
ground state (4T1), results in a dramatic increase in coercivity. Occasionally values
are much higher than those of the commercial atom-based materials Fe2O3 or CrO2.
Rather strong coercive fields are expected for molecular magnets in which CoII ion
is in distorted octahedral environment, because being magnetically anisotropic CoII

can assume preferred orientations. The intrinsic anisotropy of CoII certainly also
plays a role in intralayer anisotropy, which can be responsible for the increased TC
values compared with those of the Mn analogs.

An other interesting example is the behavior of the NiII interlocked derivative
[30, 31]. First, the magnetization curves are rather unusual. The FCM curve recorded
within a very small field (1 Oe) has a break at TC = 28 K, characteristic of the long-
range magnetic ordering, then passes through a maximum at 21 K, and finally de-
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Fig. 10. FCM curve (•) (1 Oe) for Etrad2[Ni2Cu3]. The figure also shows the in-phase, χ ′
M

(�), and out-of-phase, χ ′′
M (�), versus T plots.

creases monotonically at lower temperatures (Fig. 10). The temperature at which the
magnetization vanishes (15 K) is the so-called compensation temperature, denoted
Tcomp, and already observed for other ferrimagnets [25]. Below Tcomp the magneti-
zation is aligned in a direction opposite to that of the applied magnetic field. Also,
whereas the coercive fields for manganese and cobalt derivatives increase when the
temperature is reduced, the coercive field for (Etrad)2[Ni2{Cu(opba)}3] is highest
(1.2 kOe) at Tcomp, and decreases above and below Tcomp.

The peculiar behavior of the Ni derivative has been studied in detail, and analyzed
with the help of molecular field theory (MFT) and magnetic anisotropy [30, 41]. To
study the stability of the negative magnetization several FCM curves have been
recorded with increasing magnetic field. The FCM curve obtained with a field of
1000 Oe (Fig. 11) passes through zero for two different temperatures, namely Tcomp
and TCM. Furthermore, depending on the measurement process (cooling or warming
modes) double field-induced thermal hysteresis is observed for the magnetization
curves FCM and FWM. The two curves are not superimposed, as they are normally
for ferro(ferri)magnets, and the material strongly memorizes the strength of the
magnetic field when cooling. For the same applied magnetic field (1 Oe) the FWM
curve obtained after the sample was cooled in a field of 50 kOe is almost the mirror
image of the FCM curve. To analyze these experimental data it is possible to use
MFT, which at least reproduces qualitatively the experiments. Using the Néel theory
for ferrimagnets [42], the compound may be described with three sublattices (Ni, Cu,
Etrad) characterized by their local magnetization, MNi, MCu, and MEtrad (Fig. 12).
The antiferromagnetic interactions between MNi and MCu favor their antiparallel
orientation whereas the ferromagnetic CuII-Radical interactions favor the MCu and
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Fig. 11. Magnetization versus T curves
for (Etrad)2[Ni2{Cu(opba)}3] obtained
in cooling (FCM) or warming modes
(FWM), recorded at 1000 Oe.

Fig. 12. Thermal dependence of
the magnetization sub-lattices
simulated with molecular field
theory (•) for MNi; (�) for MCu;
(�) for MEtrad; (–) for MS.

MEtrad orientation in the same direction. To simplify the discussion below, we note
M1/2 = MCu + MEtrad.

Below TC, the total magnetization MS is the algebraic sum of the two contribu-
tions MNi and M1/2. MS, first, is positive as T is lowered, MNi being larger in value
than M1/2. But MNi and M1/2 have different thermal dependencies and the two
contributions cancel out at the compensation temperature Tcomp, MS is then equal
to zero. Below Tcomp, M1/2 becomes larger than MNi and MS turns negative. This
negative magnetization corresponds to a metastable state, which exists because the
orientation of each sublattice is blocked by anisotropy (Hcoerc is maximum at Tcomp
with a value of 1.2 kOe). As Hcoerc decreases when the temperature is reduced fur-
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ther, it might happen during the cooling mode measurement that H becomes higher
than Hcoerc. In this circumstance the negative magnetization state is no longer sta-
ble, and we observe the magnetic pole reversal at TCM with MS > 0 (Fig. 11). The
same explanation applies for the warming mode process and explains the appear-
ance of the double field-induced thermal hysteresis. The efficiency of hard magnets
and ferrimagnets for information storage is well established. Molecular chemistry
thus provides access to materials exhibiting memory effects related to the block-
ing of the magnetization and its temperature-dependent orientation. Interestingly,
the use of a simple theory like MFT makes possible the design of compounds with
desired properties by controlling TC, Hcoerc and Tcomp.

These results show that by quite a small alteration of the synthetic steps, for in-
stance by changing the metal ion M, the magnetic properties of molecule-based
magnets can be modified. The Mn, Co, and Ni derivatives have the same general
architectures, but the resulting magnets have very different features and these prop-
erties are simply related to the nature of the ion. The Mn derivative is a soft magnet
(Mn being an isotropic ion), the Co derivative is a hard magnet (because of the
strong intrinsic anisotropy of the Co ion), and the Ni derivative is an intermediate
case in terms of coercive fields. For the Ni ion the anisotropy is weaker than for Co
and finds its origin in the zero-field splitting effects. Its weaker anisotropy is respon-
sible for the interesting compensated ferrimagnetic behavior. If the anisotropy is
stronger no compensation temperature is observed, as shown for the Co derivative.

1.2.3 Dimensionality Modulation by a
Dehydration-Polymerization Process

We have seen in Section 1.2.1.4 that the magnetic properties of some molecular com-
pounds can be dramatically and reversibly modified by means of a mild dehydration-
rehydration process. This class of compound has been named molecular magnetic
sponges [43–46]. This is because they have “sponge”-like characteristics, viz. a re-
versible cross-over on dehydration to a polymerized long-range magnetically or-
dered state with spontaneous magnetization, and transform back into the isolated
units underlying the initial non-magnetic phase on re-absorption of water, i. e. re-
hydration of both non-coordinated and coordinated water molecules. For some of
these sponges a color change also occurs reversibly and simultaneously with the
change in magnetic properties at the transition temperature corresponding to the
dehydration-rehydration process.

The very first example of a molecule-based magnet obtained by reversible dehy-
dration of a paramagnetic (or antiferromagnetic) species was MnCu(obbz) · nH2O
with n = 5 or 1, and where “obbz” stands for oxamido(bis benzoato) (Scheme 2)
[47]. The pentahydrate has a chain structure and has a long-range antiferromag-
netic transition at TN = 2.3 K, because of very weak interchain interaction. When
four out of five water molecules are removed, however, this interaction strengthens
and the monohydrate becomes a genuine magnet with TC = 14 K. The dehydration
process is reversible.
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Because of the results obtained for the Co molecule-based magnets (Sections
1.2.1.5 and 1.2.1.6), study of such behavior in CoCu compounds seemed obvious. The
linear chain compound CoCu(pbaOH)(H2O)3 · 2H2O, in which the ferrimagnetic
chains interact antiferromagnetically (TN ≈ 2 K) within the lattice, was transformed
into [CoCu(pbaOH)(H2O)3] on removal of two non-coordinated water molecules
by thermal treatment. The three hydrate has ferromagnetic ordering at TC = 9.5 K.
Removal of a third water molecule, occupying the apical position in the copper
coordination sphere, yields a compound [CoCu(pbaOH)(H2O)2] with high values
of TC = 38 K and Hcoerc = 5.66 kOe at 2 K [43]. The dehydration process is not only
reversible but also accompanied by color change, the blue pentahydrate turning
deep purple when dehydrated into the ferromagnetic CoCu(pbaOH)(H2O)2, and
vice versa upon rehydration.

The dehydrated compound CoCu(pba)H2O was obtained by heating the parent
blue compound, CoCu(pba)(H2O)3 · 2H2O (isostructural with the Mn compound
represented in Fig. 4) at 120◦C under vacuum. If heating is stopped at 120◦C, the
compound [CoCu(pba)H2O] begins to reabsorb water and the color changes back
from purple to blue. The compound decomposes if heated above 175◦C. The plot
of χMT against T for CoCu(pba)(H2O)3 · 2H2O, with a minimum at 65 K, is in-
dicatives of magnetic behavior typical of a bimetallic one-dimensional CoII–CuII

ferrimagnet chain, ordering antiferromagnetically at 7 K. The shortest interchain
separations between metal atoms are Cu–Cu and Co–Co. The dehydrated analog
[CoCu(pba)H2O] is, however ferromagnetic, with spontaneous magnetization be-
low 33 K, as confirmed by the χMT vs. T and ac-susceptibility data, and a large
coercive field of 3 kOe at 2 K, arising from the magnetic anisotropy of the CoII

ion in octahedral surroundings. We believe that the bimetallic ferrimagnetic chains
move closer to each other on loss of water molecules in such a manner that the
shortest metal ion distances are now between the CoII ions of one chain and the
CuII ions of the adjacent chain. The dehydration–rehydration process, accompa-
nied by the color change from blue to purple is totally reversible. If left to stand in
air for ca. two days the dehydrated ferromagnetic compound regains the magnetic
characteristics of the original hydrated compound. One can, of course, also achieve
rehydration by adding water to the dehydrated compound in a controlled fashion.

In the following text, to describe the characteristics of the magnetic sponges
we have chosen CoCu(obbz)(H2O)4 · 2H2O as a representative example; this is
described in sufficient detail below to bring the phenomenon of the softness of
the molecular lattice into focus. The compound CoCu(obbz)(H2O)4 · 2H2O is a
binuclear and has four water molecules in the cobalt coordination sphere and
two additional uncoordinated water molecules. The CoII is in octahedral en-
vironment, and the CuII ion is in a square-planar environment. The χMT for
CoCu(obbz)(H2O)4 · 2H2O tends to zero as T is lowered, as expected for antiferro-
magnetically coupled CoIICuII pairs in a non-magnetic ground state (Fig. 13). The
combined effect of distortion and spin-orbit coupling on CoII in an octahedral en-
vironment gives rise to low-lying Kramers doublets among which only the ground
Kramers doublet is thermally populated at low temperatures. The CoII ion can then
have an effective spin of only S = 1/2, and a very anisotropic gCo tensor. An an-
tiferromagnetic interaction between CoII and CuII (SCu = 1/2) in such a situation
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Fig. 13. χMT vs. T plots for CoCu(obbz)(H2O)4 · 2H2O and its dehydrated versions to
CoCu(obbz)(H2O)3 and to CoCu(obbz)(H2O) [46].

gives rise to a non-magnetic singlet state and a pseudo triplet state, split in zero
field. Thermogravimetric analysis revealed that CoCu(obbz)(H2O)4 · 2H2O could
be dehydrated to give two well-defined new compounds. At approximately 100◦C,
the two non-coordinated water molecules leave along with one water molecule from
the CoII coordination sphere. The removal of these three water molecules is accom-
panied by a sort of polymerization process yielding a one-dimensional chainmag-
netic compound CoCu(obbz)(H2O)3 for which the χMT vs. T plot has a minimum
at 74 K, but no long range magnetic order is observed down to 2 K. Heating this
compound further up to approximately 200◦C resulted in the release of two more
water molecules and development of the polymerization process to give a bulk fer-
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rimagnetic compound CoCu(obbz)H2O with long-range magnetic ordering below
TC = 25 K (Fig. 13). The χMT vs. T plot for CoCu(obbz)H2O is indicative of long-
range magnetic ordering below TC; this is confirmed by FCM, ZFCM, and REM
plots and by ac magnetic susceptibility data. Remarkably, this dehydration process
was completely reversible inasmuch as if a sample of CoCu(obbz)H2O is kept at
room temperature in the close vicinity of a source of water it can slowly re-adsorb
water and be transformed back into the original phase CoCu(obbz)(H2O)4 · 2H2O,
the chemical composition, X-ray structure, and magnetic and optical behavior of
which is exactly reproduced. The dehydration-rehydration process can be repeated
as many times as desired without any degradation of the material, if the temperature
does not exceed 275◦C, the decomposition temperature.

Not only is CoCu(obbz)H2O a magnet, but it is a hard magnet, because the field
dependence of the magnetization at 5 K has a wide hysteresis loop with a coercive
field of 3 kOe, indicating that CoII must be in an octahedral environment, in con-
travention of the fact that this monohydrate has only one water molecule in the
cobalt coordination sphere; this might suggest tetrahedral coordination of the CoII

ion. The octahedral environment around the CoII ion can be restored only if the two
water molecules which were removed from the coordination sphere of Co while de-
hydrating the trihydrate CoCu(obbz)(H2O)3 to the monohydrate CoCu(obbz)H2O
are replaced by two carboxylato oxygen atoms belonging to two neighboring chains,
which would also raise the dimensionality of the compound CoCu(obbz)H2O in
compatibility with the long-range magnetic order displayed by CoCu(obbz)H2O. In-
terestingly, infrared and Raman spectroscopy data are in line with this proposition.
The IR spectrum of CoCu(obbz)(H2O)4 · 2H2O in the 1550–1620 cm−1 range has
several intense and broad bands which can be assigned to the antisymmetric νCOO
vibrations of the monodentate carboxylato groups. The relative intensities of these
features decrease for the trihydrate [CoCu(obbz)(H2O)3] and new IR bands start
appearing in the ranges 1600–1620 cm−1, and 1660–1690 cm−1, signifying antisym-
metric νCOO vibrations of the bridging carboxylato groups, and very asymmetrical
carboxylato groups, respectively [44]. The relative intensities of these two groups
of bands increase further as we pass from the trihydrate [CoCu(obbz)(H2O)3] to
the monohydrate [CoCu(obbz)H2O].

This points to the formation of two Co–O bonds during dehydration, involv-
ing both bridging and strongly asymmetrical carboxylato groups at the expense of
two Co–H2O bonds. The Raman spectrum of CoCu(obbz)(H2O)4 · 2H2O is dom-
inated by the peak at 1415 cm−1, arising from the symmetric νCOO vibrations of
the monodentate carboxylato groups. Upon dehydration this band shifts to higher
energy and appears at 1428 cm−1 for CoCu(obbz)H2O, assignable to the symmet-
ric νCOO vibrations of the bridging carboxylato groups. Upon rehydration of the
sample, in situ, the νCOO mode shifted from 1428 back to 1415 cm−1, even its half-
width reverting from 10 to ca. 22 cm−1, underlining the complete reversibility of the
dehydration-rehydration process. It was, therefore, postulated that the compound
CoCu(obbz)(H2O)3 has a chain structure and behaves as a one-dimensional ferri-
magnet without long-range ordering.

For the monohydrate CoCu(obbz)H2O the chains associate to afford a network of
higher dimensionality. The monodentate carboxylato groups of a chain create, upon
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dehydration, Co–O bonds involving CoII ions belonging to the neighboring chains.
If it was so, the CoII ion in CoCu(obbz)H2O would be surrounded by six oxygen
atoms, one arising from a water molecule, two from the oxamido group, one from a
carboxylato groups, as shown schematically in Fig. 14. The shortest intermolecular
metal-metal separation in CoCu(obbz)(H2O)4 · 2H2O is 5.109 Å between Co and
Cu, which happens to be shorter than the intramolecular distance of 5.295 Å. It
seems, therefore, that in this case the molecular lattice was pre-formed to facilitate
the equilibrium of Scheme 5 which gets displaced towards the right if conditions
favor dehydration (i. e. vacuum or heating) whereas in the presence of excess water it
gets displaced towards the left. The reversibility of the dehydration-polymerization
process hinges on the simultaneous reversibility of:

• creation (breaking) of Co-carboxylato bonds, involving a step in the solid state,
and

• breaking (creation) of Co-water bonds, a step occurring in a solid-liquid hetero-
geneous phase.

Fig. 14. Proposed chain structure for CoCu(obbz)(H2O)3 and the two-dimensional structure
for CoCu(obbz)(H2O), obtained by association of chains [46].
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Scheme 5

The non-magnetic compound CoCu(obze)(H2O)4 · 2H2O could also be grown
as single crystals and converted to the ferrimagnetic state upon dehydration at
190◦C, with TC values of 20 K, and Hcoerc of 1 kOe at 2 K. The color of the
compound changed from violet to dull green on dehydration and back to vio-
let on rehydration [45]. The structure of CoCu(obze)(H2O)4 · 2H2O is isomor-
phous with that of MnCu(obze)(H2O)4 · 2H2O [48], with the Co environment
identical with that observed for CoCu(obbz)(H2O)4 · 2H2O. Interestingly, for both
CoCu(obbz)(H2O)4 · 2H2O and [CoCu(obze)(H2O)4].2H2O the powder X-ray pat-
terns were strongly modified on dehydration, although the compounds remained
crystalline. Upon rehydration, the patterns returned to those of the starting com-
pounds.

Reversibility of the dehydration-rehydration process is well-known for many
hydrates. The novel and remarkable feature characterizing the sponges described
here (summarized in Table 5), is the reversible release of coordinated wa-
ter molecules, accompanied by a polymerization process. The Co–O bonds in
CoCu(obbz)(H2O)4 · 2H2O, for instance, can be broken and created without de-
stroying the fundamental molecular architecture, although it is modified reversibly.
The dehydration process also increases the structural and magnetic dimensionality
of this sponge from zero (for isolated molecules) to two or three, depending on
the amount of dehydration; on rehydration the structure reverts to the original low
dimensionality (Fig. 15). Molecular magnetic sponges are illustrative of the softness
of the molecular lattice. Molecular chemistry thus provides a route to materials that
can pass reversibly from a non-magnetic state to a magnetically ordered state, and
the process of reversibility can be repeated without any fatigue of the molecule. This
is certainly not possible by any of the simple solid-state chemical processing routes.
Restoration of magnetic and physical properties upon rehydration points hopefully
to important dividends to be reaped from a synergy between two seemingly di-

Table 5. Features of the CoIICuII molecular magnetic sponges after dehydration.

Compound After dehydration TC Hcoerc Color Ref.
(K) (Oe)

CoCu(pbaOH)(H2O)3 · 2H2O [CoCu(pbaOH)(H2O)2] 38 5660 (2 K) Blue to [43]
deep
purple

CoCu(pba)(H2O)3 · 2H2O [CoCu(pba)H2O] 33 300 (2 K) Blue to [45]
purple

CoCu(obbz)(H2O)4 · 2H2O [CoCu(obbz)H2O] 25 3000 (5 K) [46]
CoCu(obze)(H2O)4 · 2H2O [CoCu(obze)H2O] 20 1000 (2 K) Violet [45]

to dull
green
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Dehydration  

Dehydration  

Hydration  

Hydration  

Fig. 15. The dehydration-polymerization process for
ferrimagnetic precursor units [46]. The two steps, in
particular, apply to CoCu(obbz)(H2O)4 · 2H2O de-
scribed in the text.

verse disciplines of molecular chemistry and materials science. The color change
at a magnetic transition is a useful property for designing a molecular switching
device, and the high value of Hcoerc might make these molecular magnets useful
in the construction of memory devices for storage of data if the TC value can be
increased to approximately room temperature, and the color change occurs within
a few nanoseconds.

1.2.4 Alternative Techniques for the Studies of Exchange-coupled Systems

As mentioned in Section 1.2.1.4, the chain compounds can be crystallized and control
of the temperature during the crystallization process enabled us to obtain crystals
the size of which was sufficient for physical studies. We investigated single-crystal
polarized neutron diffraction (p.n.d.) and optical spectroscopy for chain compounds
to obtain precise and complementary information to that gathered by magnetic
studies.

The p.n.d. technique enables the determination of spin-density maps, which
give precise information on mechanisms governing the exchange interactions. For
MnCu(pba)(H2O)3 · 2H2O the spin density map (Fig. 4) reveals alternation of large
positive spin densities (full lines) in the MnII region and weak negative spin den-
sities (dotted lines) in the CuII region. Both positive and negative spin densities
are delocalized from the metal ion towards its nearest neighbors. This delocaliza-
tion is much more pronounced on the copper side than on the manganese side.
This situation reflects the stronger covalency of the Cu–N (or O) bonds compared
with the Mn–O bonds. A better way of comprehending the spin delocalization is
to express the spin distribution with atomic spin populations. In the chain the CuII

carries 76% of the negative spin density whereas the MnII carries 97.6%, which is
consistent with the more covalent character of the bonds around the copper. Fi-
nally, the sum of the negative atomic spin populations is equal to −1.05 ÌB, and
that of the positive spin populations is equal to +5.05 ÌB. This description is very
close to a naive picture, when ignoring the spin delocalization, the metallic popu-
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lation would be PMn = gMnSMn and PCu = −gCuSCu, gMn and gCu being the local
Zeeman factors. In fact, for antiferromagnetically (MnCu)n systems, the spin pop-
ulations on the metal centers in the ground state depend on the number of repeat
units n [49]. It has been shown theoretically (DFT and DMRG approaches) that
for an isolated MnCu pair (n = 1) the ground state corresponds to mixing of the
(+5/2, −1/2) state with the (+3/2, +1/2) state. When n increases contamination of the
(+3/2, +1/2) state decreases, and then the ground state is only characterized by the
(+5/2, −1/2) component. These theoretical calculations are satisfactorily confirmed
by the experimental results.

The single-crystal polarized optical spectra of MnCupba(H2O)3 · 2H2O at room
temperature is shown Fig. 16 [17]. Strong polarization of the absorption is observed
in the chain direction, because of the strong polarization of the CuII band at around
16 000 cm−1 in this direction. They also reveal narrow and intense formally spin-
forbidden MnII transitions 6A1g

4A1g, 4Eg (Oh) around 24 000 cm−1 activated by
an exchange mechanism and strongly temperature-dependent [50]. Both polariza-
tion and thermal features of these bands have been interpreted in the pair mecha-
nism, first introduced by Tanabe. In particular, these optical studies offer an alterna-
tive means of determining the exchange parameter with the detailed temperature-
dependence studies of the spin-forbidden transitions. In the MnCu chain compound,

Fig. 16. Polarized optical absorption spectra at room temperature perpendicular to the bc
face of a single crystal of MnCu(pba)(H2O)3 · 2H2O [17].
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J has been found to be Jopt = −25 cm−1, which is exactly the value deduced from
magnetic studies. The optical technique also enables information to be obtained
about the excited state reached. In fact, careful thermal study of the spin-forbidden
MnII transitions reveals cold and hot components the energy difference of which
has been directly related to J and J ∗, where J ∗ is the exchange parameter be-
tween CuII and MnII in its first excited state. Our study revealed a J ∗ value equal
to +40 cm−1. The change of sign between J (antiferromagnetic interaction between
CuII and MnII) and J ∗ (ferromagnetic interaction between CuII and Mn*II) is sur-
prising, and not yet fully understood. This behavior has been already described for
other MnCu compounds [51].

1.3 Bimetallic Magnets Based on Second-
and Third-row Transition Metal Ions

The ions from the second and third transition metal series have been considered only
very recently as spin carriers for the preparation of bimetallic magnets. These ions
are characterized by more diffuse valence orbitals compared with their 3d congeners,
a trend following the sequence 5d > 4d � 3d. To magnetochemists a more diffuse
singly occupied orbital suggests that an enhanced exchange interaction might be
expected between magnetic centers. Spin–orbit coupling is also often observed for
these ions, and is characteristic of compounds with magnetic anisotropy. A limitation
might, however, be that the ground state of species containing 4d or 5d metal ions
is usually derived from a strong field configuration, i. e. they are low-spin.

We will see below that the first information gathered from compounds containing
transition metal ions from the second or third series suggests exciting possibilities
for the preparation of bimetallic magnets with increased critical temperatures, with
coercivity, or even with photomagnetic properties. They also address the question of
the validity for 4d or 5d metal ions of rules applying for the analysis of the magnetic
properties of bimetallic compounds containing only 3d metals ions.

1.3.1 Examples of Ru(III)-based Compounds

The first example of molecule-based magnets involving metal ions from the second
or third transition metal series was an oxalate-bridged polymeric compound synthe-
sized from the building block [RuIII(oxalato)3]3− [52]. In this environment, the Ru
ion has a low-spin d5 electron configuration with a magnetic moment of 2.03 ÌB at
room temperature [53]. The reaction of [Ru(ox)3]3− with MnII, FeII, or CuII in the
presence of tetrabutylammonium resulted in the formation of the two dimensional
compound, (NBu4)[MIIRuIII(ox)3], which has a honeycomb structure.

The molar magnetic susceptibility data for (NBu4)[FeIIRuIII(ox)3] are repre-
sented in Fig. 17 in the form of the χMT versus T plot. The minimum in the curve,
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Fig. 17. χMT versus T curve for (NBu4)[FeIIRuIII(ox)3]. In the inset, temperature depen-
dence of 1/χM [52] (reproduced with permission; Copyright 2001, the American Chemistry
Society).

Fig. 18. Field-cooled magnetization
(FCM), zero field cooled magneti-
zation (ZFCM), and remnant mag-
netization (REM) plots for (NBu4)
FeIIRuIII(ox)3.

even if weakly pronounced, indicates ferrimagnetic behavior with a RuIII–FeII anti-
ferromagnetic interaction. The low-temperature data suggest that the compound has
long-range magnetic ordering. This is confirmed by the field cooled-magnetization
(FCM) and remnant magnetization (REM) curves shown in Fig. 18. The FCM curve
shows a steep rise of the magnetization below 13 K and the REM curve indicates that
the remnant magnetization vanishes when the sample is heated to 13 K, behavior
typical of a magnet. Confirmation of the three-dimensional ordering at TC = 13 K
was provided by the temperature dependencies of the ac magnetic responses. Both
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the in-phase, χ ′
M, and out-of-phase, χ ′′

M, ac magnetic susceptibilities pass through a
maximum.

We have already mentioned that the coercivity of a magnet is governed by both
chemical and structural factors. The chemical factor is the magnetic anisotropy of
the spin carriers and the structural factors are the crystal lattice symmetry and the
size and shape of the grains. In this species both FeII and RuIII in distorted octahe-
dral surroundings are orbital triplet ions with first-order orbital momentum. These
ions therefore have magnetic anisotropy. The field dependence of the magnetiza-
tion measured at 2 K for (NBu4)[FeIIRuIII(ox)3] reveals indeed the occurrence of
a magnetic hysteresis loop, with a coercive field of 1.55 kOe.

In contrast with the previous compound, long-range magnetic ordering is not ob-
served for (NBu4)[MnIIRuIII(ox)3] and (NBu4)[CuIIRuIII(ox)3] in the temperature
domain investigated. The magnetic behavior of these two compounds indicates that
the CuII-RuIII interaction is antiferromagnetic whereas the MnII–RuIII interaction is
ferromagnetic. The magnetic behavior of the MnII–RuIII and FeII-RuIII compounds
could by analyzed quantitatively with a theoretical model for a honeycomb lattice
[54]. The spin Hamiltonian considered in the model is given in Eq. (1) where the
index M refers to the classical spin ion, MnII or FeII. Both single-ion anisotropy for
the MII ion and anisotropic interaction have been neglected. The analytical expres-
sion used to fit the experimental data is given in Eq. (2). This expression is valid
for honeycomb lattices with alternation of quantum SRu and classical SM spins at
the corners of the hexagons and for T � |J |S/2. For (NBu4)[FeIIRuIII(ox)3] least-
squares fitting to the magnetic susceptibility data down to 20 K led to J = −9.7 cm−1,
gRu = 2.10, and gFe = 2.13. For (NBu4)[MnIIRuIII(ox)3] fitting down to 5 K gave
J = 1.04 cm−1, gRu = 2.1, and gMn = 1.97.

H = −J
∑
i, j

SRu,i · SM, j +
(

gRu
∑

i

SRu,i + gM
∑

j

SM, j

)
· Hβ (1)

χMT = 3
8

[
S2g2

M y1 − SgMgRu
y2

2
+ g2

Ru
y3

4

]
(2)

where y1 = 0.3353 + 0.0186 K + 0.5049 K 2 + 0.4534 K 3, y2 = −0.0009 + 2.0583 K −
0.3351 K 2 + 1.8454 K 3, y3 = 1.0095 + 0.0214 K + 1.1352 K 2 + 0.5341 K 3, K =
−J S/2kT , and S = [SM(SM + 1)]1/2

The magnetic properties of these compounds have revealed that with M = Mn
the RuIII–MII interaction is ferromagnetic whereas it is antiferromagnetic with M
= Cu and Fe. (NBu4)[CuIIRuIII(ox)3] is interesting because the nature of the in-
teraction does not respect the symmetry rules valid for the 3d metal ions. It is now
well understood that the nature of the interaction between two 3d magnetic centers
is governed to a large extent by the relative symmetries of the magnetic orbitals
[13]. A non-zero overlap integral between two magnetic orbitals favors an antiferro-
magnetic contribution whereas a zero overlap favors a ferromagnetic contribution.
When the interaction occurs between ions carrying more than one unpaired electron
the nature of the interaction is usually given by the weighted sum of each contribu-
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tion. These rules are in accordance with the ferromagnetic interactions found for
CuII–CrIII or NiII–CrIII oxalate compounds. The RuIII ion in octahedral surround-
ing has a low-spin state arising from the t5

2g configuration. Each of the t2g orbitals
centered on Ru is orthogonal with the dx2dy2 type magnetic orbital of CuII. On the
basis of the orbital symmetries a ferromagnetic CuII–RuIII interaction might have
been expected but it is found to be antiferromagnetic in (NBu4)[CuIIRuIII(ox)3].
Obviously, the symmetry rules which applied for analysis of the magnetic properties
of polymetallic compounds formed with 3d metal ions seem not to be transposable
to RuIII. A reason might be that the spin-orbit coupling mixes the symmetry orbitals
so that the eigenfunctions can no longer be labeled with the irreducible representa-
tion of the symmetry point groups. Study of more examples of exchanged coupled
systems involving RuIII will be necessary to rationalized this situation.

A second compound in which RuIII is in exchange interaction with MnII has been
described. It consists in a 3D network of Ru(acac)2(CN)2 units linked to MnII ions
and has long-range magnetic ordering at approximately 4 K [55]. Interestingly, the
magnetic behavior reveals that the RuIII–MnII interaction through the cyano ligand
is ferromagnetic as through the oxalato-link in (NBu4)[MnIIRuIII(ox)3].

1.3.2 Mo, Nb, and W-cyanometalate-based Magnets

As for their 3d metal ion counterpart, cyanometalate derivatives of 4d and
5d ions have also been envisaged for the preparation of bimetallic magnets.
For instance, [NbIV(CN)8]4−, [MoIII(CN)7]4−, and [WV(CN)8]3− afford extended
three-dimensional networks in the presence of MnII ions. The structure of
[Mn2(H2O)5Mo(CN)7].4H2O is depicted in Fig. 19. In this compound the MoIII

center is linked through its CN ligands to seven MnII ions, and each MnII center
is thus connected to either three or four Mo units, setting up a 3D network. The
compounds formed with the three cyanometalates behave as magnets characterized
by TC values of approximately 50 K (50, 51, and 54 K, respectively, for the Nb [56],
Mo [57, 58], and W [59] derivatives).

The magnetic properties of the two phases of compound Mn2(H2O)5Mo(CN)7.
xH2O (phase α, x = 4 and phase β, x = 4.75) have been deeply investigated and
revealed rather complex behavior. These studies have been described in detail and
we will recall here only the general features of these materials. The temperature
dependence of the magnetic susceptibility of Mn2(H2O)5Mo(CN)7 · 4H2O (phase
α) is represented in Fig. 20 as a plot of χMT against T . It is worth noting that in
the temperature range above TC, i. e. 300 to 50 K, χMT increases continuously as T
is reduced. The plot of 1/χM is also rather linear in the corresponding temperature
domain and its extension leads to an intersection with the temperature axis at T > 0.
Such features are usually characteristic of ferromagnetic interaction between the
magnetic centers, and initial results were interpreted is this way. Polarized neutron
diffraction study of a related MnII/Mo(CN)7-based compound clearly established,
however, that the MnII–MoIII interaction through the CN ligand is antiferromag-
netic [60]. The spin density map shown in Fig. 21 reveals alternation of positive spin
densities in the Mn ion region and negative spin density in the Mo region.
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Fig. 19. Mn2(H2O)5Mo(CN)7 · 4H2O: (a) view of the 3D network; (b) coordination spheres
of the MoIII and MnII centers.

An important feature of Mn2(H2O)5Mo(CN)7 · xH2O ferrimagnets is their
strong magnetic anisotropy. Results from measurement of the dependence of M
on T and M on H (Fig. 22), performed on oriented crystals, are explicit. The origin
of this anisotropy is ascribed to the 4d3 low spin MoIII ion (S = 1/2) in the Mo(CN)7
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Fig. 20. Temperature-dependence of
χMT for a polycrystalline sample
of Mn2(H2O)5Mo(CN)7 · 4H2O [57]
(reproduced with permission; Copy-
right 2001, the American Chemistry
Society).

Fig. 21. Spin density map of the bi-dimensional compound, K2Mn3(H2O)6Mo(CN)7 · 6H2O
at 4 K (applied field. 3 T) projected along the crystallographic b axis. Solid lines denote pos-
itive contours, dashed lines denote negative contours [60] (reproduced with the permission
of the editor).
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Fig. 22. (a) Temperature dependence of the magnetization for Mn2(H2O)5Mo(CN)7 · 4H2O
along the a, b, and c∗ directions (external field H = 5 Oe). (b). Field dependence of the
magnetization at T = 5 K [57] (reproduced with permission; Copyright 2001, the American
Chemistry Society).

environment for which the strongly anisotropic g tensor have been found [61, 62].
Other factors, e. g. the anisotropic components of the MoIII–MnII interaction result-
ing from the local spin-orbit coupling for the MoIII, and the low symmetry of the
crystal lattice might make significant contributions to the magnetic anisotropy of
these compounds [63]. Despite the anisotropy, however, no coercivity is observed.

The magnetic properties of the Mn2(H2O)5Mo(CN)7 · xH2O compounds are
modified by partial dehydration leading to an increase in TC up to 65 K and to
the appearance of a magnetic hysteresis with a coercive field of 850 Oe at 5 K.
An even more pronounced effect is observed for the bidimensional compound
K2[Mn3(H2O)6Mo(CN)7] · 6H2O involving the same spin carriers; for this TC is in-
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Fig. 23. Detail of the Mn–Mo connectivity in the 3D framework of Mn2(tea)MoCN7 · H2O
and temperature-dependence of the magnetization (H = 50 Oe) before and after annealing.

creased from 39 to 72 K after H2O is released from the network. For this compound
dehydration also induces an increase in coercivity. Related effects are observed
when pressure is applied to the compound [64]. These observations suggest that
slight modification of the lattice and/or the coordination spheres of the metal ions
might have an important effect on the magnetic properties of the compounds. Sub-
stitution of H2O by an ancillary ligand in the coordination sphere of the MII ion
could be an easy way to control the conformation of such networks and, conse-
quently, their magnetic properties. A first result in this direction has been obtained
for the compound Mn2(tea)Mo(CN)7 · H2O, where tea stands for triethanolamine.
For this compound the ordering temperature is 75 K and can be further increased
to 106 K by smooth annealing (Fig. 23) [65]. The spin carriers and their connectivity
in the compound with a TC of 75 K are the same than those for the compound with
TC = 51 K; the different magnetic behavior is clearly the result of small conforma-
tional differences in the structure.

It is interesting to compare the magnetic properties of a compound like
Mn2(tea)Mo(CN)7 · H2O with a related compound, Mn3[Fe(CN)6]2 · 15H2O. For
both compounds the metal ion of the cyanometalate unit bears a local spin of S = 1/2
but whereas the TC for the compound formed with the 3d ion derivative is found at
9 K, the compound with the 4d ion, MoIII, has TC for 75 K and even higher after an-
nealing. The same is also true for the compounds obtained with the cyanometalates
of NbIV and WV, which also have a local spin of S = 1/2.
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1.3.3 Light-induced Magnetism

A recent issue in molecule-based magnets is light-driven magnetism, commonly
called photomagnetism. For instance, long range magnetic order can be induced
by light irradiation of Prussian-blue derivatives involving Fe–Co pairs. The photo-
physical properties of metal ions from the second and third transition metal se-
ries is well documented, and their potential as photo-active building blocks in
magnetic materials has been demonstrated with MoIV-based compounds. For in-
stance, the three dimensional compound obtained by reaction of the diamagnetic
[MoIV(CN)8]4− building block and CuII ions has paramagnetic behavior down to
2 K. When this compound is irradiated long-range magnetic interactions are ob-
served (Fig. 24) [66–68]. The appearance of the magnetic interaction is a conse-
quence of the photo-oxidation of Mo. Upon irradiation in the energy range of the
intervalence charge-transfer band of the compound the diamagnetic MoIV trans-
fers an electron to a neighboring CuII ion and becomes MoV which is paramag-
netic with a local spin of S = 1/2. This magnetic center is then exchange-coupled
with the remaining CuII paramagnetic centers and long-range correlation appears
as the MoIV ions are oxidized to MoV. Related results are found for the chain com-
pound MnII(L)2(H2O)MoIV(CN)8 · 5H2O, where L stand for a macrocyclic ligand
[69].

Fig. 24. Dependence of magnetization on T for the compound Cu2Mo(CN)8 · 5H2O before
(�) and after (FCM •, REM � and ZFCM �) irradiation at 530 nm.
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This section would not be complete without mention of the very promising results
obtained with 4d and 5d metal ions in the construction of high-spin molecules (dis-
cussion of high-spin molecules is available elsewhere [9]). Starting from [M(CN)8]3−
(M = MoV or WV) and MnII ions, well defined {Mn9M6} molecular clusters with
a ground state of S = 39/2 and 51/2, respectively, for the W and Mo derivative,
could be synthesized [70, 71]. Related compounds are obtained with the diamag-
netic MoIV and WIV building blocks; this suggests the possibility of photo-induced
magnetism for these aggregates in the same way as for the 3D compounds [72].

The first molecule-based compound involving 4d metal ions and with long-range
magnetic interactions was described in 1998. Since then a few more heterobimetal-
lic magnets formed with building blocks comprising ions from the second or third
transition series have been reported. A general feature of these materials is the
temperature at which magnetic order is found −TC is significantly higher than for
most of the related 3d ion-based magnets. The spin-orbit coupling occurring for
these ions might, moreover, lead to materials with magnetic anisotropy, another
important feature of magnets, as was found for MoIII-based compounds. Although
the limited number of compounds and the diversity of spin carriers studied do not
currently enable conclusions to be drawn about general trends, it seems obvious
that these ions warrant more systematic investigation.

1.4 Concluding Remarks

The prominent role of structural dimensionality and nature of the active mag-
netic centers on the main characteristics of magnets, which are the temperature
below which spontaneous magnetization is observed and the magnetic anisotropy
which confers a memory effect to the material, are now well established and un-
derstood. The supramolecular chemistry of open-shell architectures provides ver-
satile access to compounds of desired topology and composition, and it is therefore
possible to design materials with properties predetermined at synthesis. Molecule-
based magnets with giant coercivity or complex magnetic behavior, e. g. multiple
magnetization-inversion can be prepared rationally.

Until now most studies have been on 3d paramagnetic ions; only very recently
have the heavier congeners, the 4d and 5d transition metal ions, been investigated.
The first results gathered with such ions show that not only do they have all the
features regarded as desirable in the contemporary study of molecular magnetism,
for example magnetic anisotropy or photo-physical properties, but the materials
obtained have spontaneous magnetization at temperature significantly higher than
those found for related 3d analogs. This opens interesting perspectives for the prepa-
ration of high-TC magnets and the number of molecule-based magnets involving
these ions will certainly increase rapidly in the coming years.
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2 Copper(II) Nitroxide Molecular Spin-transition
Complexes

Paul Rey and Victor I. Ovcharenko

2.1 Introduction

The design of molecular materials is attracting much interest from scientists, prob-
ably because it corresponds not only to a natural trend of chemical science and to a
economic need of society but also to a clear and aesthetic aspect of the professional
activity of chemists. Indeed, the molecular chemist is in the same situation as that of
an architect who has building blocks at his disposal and seeks to build a functional
structure. The building blocks at disposal of the chemist are atoms and molecular
fragments from which an infinite number of structures may be designed; depending
on functionality, however, the building blocks and assembling rules are different.

For example, molecular materials designed to have magnetic properties must in-
clude open shell fragments, transition metal ions or/and organic free radicals; these
spin carriers must also be associated in such a way that the nature of the mag-
netic interactions is controlled to produce the desired bulk material property. The
chemistry involved in the synthesis of molecular magnetic materials must therefore
take into account the organization of all space; it is a challenging problem requiring
chemical skill and intuition [1].

Pioneering investigations in this field produced extended structures in which
bridging diamagnetic organic fragments mediated magnetic interactions between
transition metal ions. Because most ligands mediate antiferromagnetic (spin-paired)
interactions, efforts have been directed toward the synthesis of organic fragments
able to link alternating, different, metal centers with the aim of obtaining ferri-
magnetic structures [2–4]. Indeed, if the metal ions have different spins and are
arranged regularly along a 1D (or any higher dimension) structure the resulting
magnetic moment will never cancel out, irrespective of the nature (ferro- or anti-
ferromagnetic) of the interaction. This strategy, however, suffers from an important
synthetic drawback – the design of organic fragments able to organize multidimen-
sional structures in which different metal ions are selectively and regularly arranged
into two inter-penetrating sub-lattices.

This difficulty is easily overcame if one of the spins is carried by the bridging
organic fragment itself. Indeed, alternation of spin carriers is then a consequence
of coordination, and ferrimagnetism naturally follows from the presence of differ-
ent organic (S = 1/2) and metallic (S > 1/2) magnetic centers. This strategy was
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42 2 Copper(II) Nitroxide Molecular Spin-transition Complexes

introduced in the eighties with the use of stable nitroxide free radicals as building
blocks in the design of molecular magnetic materials [5, 6].

Fifteen years later it can be seen from examination of the literature that, among
molecules or molecular assemblies relevant to molecular magnetism, those contain-
ing stable nitroxide free radicals are playing a particularly important role [1]. This
situation is the consequence of their ability to assemble as purely organic crystals or
to function as ligands towards metal ions. Thus, one understands the popularity of
nitroxides in magnetic engineering, because the design of magnetic materials takes
advantage of the flexibility of organic synthesis and of the diversity of magnetic
situations found in coordination compounds.

2.2 Nitroxide Free Radicals as Building Blocks
for Metal-containing Magnetic Species

Although nitroxides have been known for more than one hundred years [7], their
chemistry was deeply investigated only in the sixties and seventies. Several hundred
individual compounds characterized by the presence of at least one NO group have
been prepared; these are classified as members of several classes of compound,
depending on structural features related to stability [8–10].

As a general rule, the presence of protons in a position α to the oxyl group is the
cause of bimolecular disproportionation of nitroxides; therefore, stable nitroxides
are characterized by permethylated or aromatic substituents, or conjugated struc-
tures as shown in Fig. 1.

Fig. 1. Examples of nitroxide ligands: (a) piperidinyl (commercially available); (b) nitronyl;
(c) imino; (d) and (e) aromatic polynitroxides.
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Remembering that magnetism is a bulk property (or at least a finite collection of
spin carriers), bridging ligands, such as nitronyl (b) and imino (c) nitroxides, and poly
nitroxides, where nitroxyl groups are m-substituents of a phenyl ring (d and e), are
particularly attractive. They all have several oxyl groups and unsaturated structures,
enabling correlation of the unpaired spin density over the different coordination
sites.

2.2.1 Electronic Structure

The magnetic orbital (semi-occupied molecular orbital) in nitroxides is well estab-
lished as having π∗ symmetry, in agreement with elementary molecular orbital the-
ory [11]. Polarized neutron diffraction studies performed on nitronyl and imino
nitroxides confirm these expectations. The important point to keep in mind is that
both potential coordination sites (O,O in nitronyl and N,O in imino nitroxides) carry
large and positive spin densities [12].

As sketched for nitronyl nitroxides in Fig. 2, both sites of coordination are equiv-
alent; in particular they play the same role concerning overlap with d orbitals of
transition metal ions.

Fig. 2. Sketch of the magnetic orbital in nitronyl nitroxides.
The sp2 carbon atom carries a negative spin density. The
methyl groups have been omitted.

2.2.2 Coordination Properties

The oxygen atom of the nitroxyl group has weak Lewis base properties and binds
only to electron-acceptor metal centers. This is why the metal centers are surrounded
by fluorinated electron-withdrawing ligands, e. g. hexafluoroacetylacetonato groups,
in most studies devoted to the coordination chemistry of nitroxides. Most of our
knowledge of the coordination behavior of the oxyl group comes from the pioneer-
ing work of Doedens who characterized structurally the first metal complexes of
simple piperidinyl nitroxides (Fig. 1a) [13, 14].

According to Lewis the oxyl group can be represented as a neutral form and
another form in which the oxygen atom carries a formal negative charge (Fig. 3).

Fig. 3. Lewis representations of the oxyl
group.
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Fig. 4. Expected modes of binding of nitronyl nitroxides to metal ions: (a) non-bridging;
(b) µ-1,3 bridging; (c) µ-1,1 bridging; (d) µ-1,1 and µ-3,3 bridging.

It is clear that the unpaired electron is delocalized on both atoms but that com-
plexation can favor one of these limiting formulas. In Fig. 3b, taking into account
the coordination properties of nitrones or alkoxides, one expects that the oxygen
atom might function as a µ-1,1 bridging group as sketched in Fig. 4 for nitronyl
nitroxides.

Although derivatives of metal-hexafluoroacetylacetonates usually correspond to
coordination mode a or b and are discrete or 1D complexes, a few nickel(II) and
cobalt(II) complexes with a µ-1,1 oxyl bridge have been characterized, and a man-
ganese(II) complex probably has a structure corresponding to mode d. In contrast
with nitronyl nitroxides, in all other nitroxides, e. g. piperidinyl nitroxides or the
triradicals described in Figs. 1d and 1e, the oxyl group is never µ-1,1 bridging. This
behavior must be related to steric crowding – in nitronyl and imino nitroxides one
position α to the oxyl groups is not fully substituted, as observed in piperidinyl ni-
troxides for example, and steric crowding depends on the substituent in position 2.

Steric crowding is one of the main features governing the coordination properties
of nitroxides. Obviously, for metal ions where a strong Jahn-Teller effect is operative
one expects that steric crowding will play a major role, because bulky ligands are
expected to be better accommodated in axial positions. The coordination geometry
thus results not only from the steric demand of the ligand but also from the nature
of the metal ions. Importantly, the coordination geometry will result in specific ori-
entations of magnetic orbitals and will determine the nature and the magnitude of
the magnetic interactions. Let us examine crude guidelines for designing complexes
[6].

2.2.2.1 Oxygen Coordination

It is convenient to consider metal ions as different as possible. For example, man-
ganese(II) which is highly isotropic and has five unpaired electrons is much different
from copper(II) which has a single unpaired electron and is subject to strong Jahn–
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Teller effect. For metal ions where numerous d orbitals are singly occupied, anyone
interested in magnetic properties need not care much about the coordination geom-
etry, because one at least of the metal magnetic orbitals will have the right symmetry
for overlapping with the ligand magnetic orbital. In contrast, for copper(II), overlap
with the unique half-filled d orbital depends on the axial or equatorial binding of
the nitroxide ligand.

It has been observed that the structure of the nitroxide ligand can play a funda-
mental role in two ways. Bulky substituents favor axial coordination of the nitroxyl
group in octahedral complexes because steric crowding is released; when the free
radical ligand carries another donor group, e. g. to bridge two metal ions, the binding
is also generally axial for reasons of steric crowding, at least when the metal center
carries hexafluoroacetylacetonato groups. In this situation, the next metal ion can
be regarded as a “bulky substituent”. This is the rule for nitronyl and imino ni-
troxides (two coordination sites), for which the expected (and generally observed at
room temperature) binding geometry in polynuclear derivatives is axial. In contrast,
in complexes of nitroxides which do not carry extra coordination sites and are not
sterically demanding the observed binding geometry is equatorial. In the absence
of reliable theoretical calculations it seems that the actual binding geometry is the
result of a delicate balance between electronic and steric factors.

Therefore, because of a delocalized structure, the presence of two coordination
sites and a steric demand which can be monitored through the bulkiness of the
substituent in position 2, the coordination behavior of nitronyl nitroxides can be
tuned to obtain specific complexes and, consequently, specific magnetic properties.

Considering first-row transition metal ions, coordination through the oxygen
atom (all nitroxides except imino nitroxides) generally occurs such that the lig-
and magnetic orbital strongly overlaps with the metal orbital directed along the
M–O bond. This situation results in strong antiferromagnetic metal–ligand interac-
tion. Axial binding to an octahedral or square planar copper(II) complex, however,
makes the ligand (π∗) and metal (dx2−y2 ) magnetic orbitals orthogonal to each other.
Accordingly, the interaction is ferromagnetic. Many of these complexes have been
characterized in which the interaction can be as large as +100 cm−1 (H = −JS1S2)
but, because the metal coordination sphere is often distorted, pseudo-orthogonality
leads to weaker values of 10–30 cm−1. Ferromagnetic behavior is also observed in
a few Ni(II) complexes where accidental orthogonality also occurs.

2.2.2.2 Nitrogen Coordination

Coordination of nitrogen in imino nitroxides complexes occurs through the nitro-
gen lone pair which is in the plane of the imidazolidine ring and orthogonal to the
π∗ magnetic orbital. In this situation overlap and antiferromagnetic behavior are
disfavored so that, roughly, the rule is opposite to that governing oxyl(oxygen) co-
ordination – most interactions are ferromagnetic. This is particularly true for Cu(II)
and Ni(II) (high-spin) complexes, all of which are characterized by ferromagnetic
interactions. Interestingly, these interactions are large, 300–400 cm−1 in copper(II)
complexes and >100 cm−1 in nickel complexes.
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Quantitatively, interactions are strong as expected for exchange coupled species
where the spin carriers are directly bound. Actually, metal-nitroxide species belong
to the only known system where exchange interactions spread over a energy range
of 1000 cm−1 (−500 to +500) are observed.

In addition to variety in coordination mode, nature, and magnitude of exchange
interactions, one must consider the consequence of including donor atoms in sub-
stituents in position 2 of a nitroxide ligand; this leads to more possibilities for the
design of molecular magnetic species. In particular, this short account is devoted
to copper(II) complexes of nitronyl and imino nitroxides, in which the substituent
includes a nitrogen binding site in a non-chelating position for the oxyl group, which
have peculiar magnetic properties.

2.3 Molecular Spin Transition Species

The preceding section stressed the diverse structural and magnetic situations en-
countered in nitroxide coordination chemistry and in particular in copper(II) com-
plexes. As already mentioned, axial and equatorial binding which corresponds to
opposite interactions depend on several factors. Spin pairing is probably a driv-
ing force for equatorial binding which is counterbalanced by steric effects favoring
axial coordination. It is, therefore, not unexpected that, in complexes with a pecu-
liar structure, the energy gap between axial and equatorial coordination should be
very weak. As a consequence, these complexes would undergo conversion between
these two forms and between two types of magnetic behavior under an appropriate
perturbation.

Such behavior is, indeed, observed in copper(II) complexes with 3-pyridylni-
tronyl, 3-pyridylimino, and pyrazolyl nitroxides (Fig. 5).

These ligands are tridentate. Although nitrogen coordination should occur to any
metal center, binding of the oxyl group requires use of acceptor metal fragments such
as hexafluoroacetylacetonates (M(hfac)2). Structurally, these complexes belong to
two classes.

2.3.1 Discrete Species

For LNPy and LIpy, depending upon the proportion of reactants, different com-
plexes are obtained for each ligand. Among these are tetranuclear species, the struc-
ture of which is represented in Fig. 6 [15, 16]. They correspond to full participation
of all coordination sites and have a cyclic structure including two intra-cyclic octa-
hedral and two extra-cyclic penta-coordinated copper ions.

The only significant difference between the complexes of the nitronyl and the
imino nitroxide resides in the environment of the extra-cyclic metal centers which
are square pyramidal in the former and trigonal bipyramidal (nitrogen coordination)
in the latter. Coordination features in both complexes are unexceptional, because
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Fig. 5. Non-chelating nitroxides for which spin-transition-like behavior has been character-
ized.

Fig. 6. Room temperature
structure of the tetranuclear
species [Cu(hfac)2]4(LNPy)2.
In the analogous complex de-
rived from the imino nitrox-
ide, [Cu(hfac)2]4(LIPy)2, the
extra-cyclic metal centers are
trigonal bipyramidal.
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similar arrangements are found for nitroxides carrying substituents of similar bulki-
ness, e. g. a phenyl group. In particular, the oxyl ligation to the intra-cyclic metal ion
is axial at room temperature in both complexes, as is usually observed for bis(oxyl)
bridging ligands. The presence of an additional binding site in the pyridyl fragment
is, however, responsible for the formation of the cyclic structure observed.

The magnetic properties of both complexes are displayed in Fig. 7 as the tem-
perature dependence of χMT .

One observes two types of Curie behavior, one at high temperature (>120 K)
corresponding to six independent S = 1/2 spins and another corresponding to two
independent S = 1/2 spins below 90 K. Keeping in mind that, at room tempera-
ture, the coordination of all oxyl groups is axial and that such geometry results in
a weak ferromagnetic interaction, the independence of the spins at high temper-
ature is straightforward to understand. The apparent disappearance of four spins
below 120 K is explained by a crystal structure at 50 K which shows that the axial

Fig. 7. Temperature de-
pendence of χMT for
[Cu(hfac)2]4(NIT-3Py)2] (a)
and [Cu(hfac)2]4(IM-3Py)2]
(b).
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oxyl coordination to the intra-cyclic copper ion has switched to equatorial at low
temperature. In this new geometry the interaction of the nitroxide ligand with the
metal center is strongly antiferromagnetic, so the magnetic behavior corresponds
to the two remaining uncoupled extra-cyclic copper(II) ions.

The analogous complex of the imino nitroxide has more complicated features.
Because crystal breaking precludes the determination of the structure at low tem-
perature, understanding of these features is more speculative. One observes at ca
70 K, however, a decrease of χMT which also corresponds to the pairing of four spins.
The high-temperature behavior is far more complicated than that of the nitronyl ni-
troxide analog – because nitrogen bonding of the imino nitroxide to the extra-cyclic
metal is ferromagnetic and large, the room temperature value of χMT is larger than
that expected for independent spins and increases as the temperature decreases.
There is then a transition to a χMT value corresponding to independent spins and
then a new smooth increase down to 70 K. This second transition has been tenta-
tively interpreted as a rearrangement of the extra-cyclic copper(II) coordination
sphere from trigonal bipyramidal to square pyramidal. This switch occurs with a
change of the nitrogen coordination from equatorial (short binding distance and
large ferromagnetic coupling) to axial (large binding distance and weaker ferro-
magnetic coupling).

Another difference between the magnetic behavior of the two complexes has
been observed. Whereas in the former the low-temperature transition occurs with-
out hysteresis, in the latter both transitions have rather large hysteresis loops. This is
in agreement with extensive rearrangement of the extra-cyclic metal center which,
as shown by the room-temperature crystal structure, should affect neighboring
molecules and occur cooperatively.

These compounds were the first examples of a new type of spin-transition be-
havior. It has been called molecular spin-transition because, in contrast with con-
ventional Fe(II) or cobalt(II) spin-transition species, in these copper(II)-nitroxide
complexes the change in spin multiplicity involves several open-shell fragments.
Phenomenologically, however, structural and magnetic aspects of the changes are
very similar in both.

Although understanding of the structural features involved in the onset of the
transition is poor, it is apparent that crystal packing is of utmost importance. In-
deed, [Cu(hfac)2]4(LIPy)2] crystallizes as two polymorphs and the molecular spin
transition is observed in one only.

Both compounds have a cyclic structure but it was unknown whether 1D or
2D compounds could undergo such a conversion between two different magnetic
and structural states. Attempts have been made using the 5-pyrimidyl-substituted
nitronyl nitroxide (Fig. 5, LNPim), a tetradentate ligand, which gives a 1D structure
in which similar cyclic fragments are linked by copper(II) ions through the second
m-nitrogen of the pyrimidyl ring. In this compound, however, equatorial oxygen
binding to the intra-cyclic metal is observed at room temperature; on heating no
transition is observed before decomposition. Nevertheless, copper(II) derivatives
of LnpyrR are 1D species with even richer magnetic behavior.
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2.3.2 One-dimensional Species

These are derivatives of nitronyl nitroxides whose spin-labeled heterocycle contains
a pyrazole fragment as substituents which may be easily modified [17]. These poly-
functional nitroxides react with transition metal ions, forming complexes differing
in structure and composition. In our study on Cu(hfac)2 complexes with LNPyrR we
revealed a family of chain heterospin complexes with spin-crossover-like behavior
at relatively high temperatures (130–230 K) [18–20]. Crystal cracking occurred for
only one of the complexes (with LNPyrMe); it occurred in the region of the transi-
tion temperature. For all other heterospin complexes, structure determinations were
successfully performed before and after the spin transition. This enabled tracing of
the structural dynamics in the systems. Whereas repeated cooling/heating cycles led
to considerable changes in unit-cell volumes, the cell contraction/expansion was gen-
erally reversible and X-ray analyses did not reveal any changes in crystal quality. For
this reason we called these crystals “breathing crystals”. Spin-crossover-like behav-
ior was found to be intrinsic to polymer chain compounds with a “head-to-head” or
“head-to-tail” motif. Unexpectedly, only half the total number of spins participated
in the spin-crossover-like effect. As mentioned above, for classical spin crossover
compounds, the magnetic moment decreases (gradually, abruptly, stepwise, or with
hysteresis) with temperature and usually the spins of all paramagnetic centers par-
ticipate in this process [21]. In our work participation of only half the total number
of spins in the spin transition needed a reasonable explanation.

Reactions of Cu(hfac)2 with LNPyrR in non-polar solvents (hexane or hep-
tane) in a 1:1 ratio lead to chain polymer complexes Cu(hfac)2(LNPyrR) with
a “head-to-head” (Cu(hfac)2LNPyrEt and Cu(hfac)2LNPyrPr) or “head-to-tail”
(Cu(hfac)2LNPyrMe and [(Cu(hfac)2)2LNPyrMe,LNPyrEt]) motif. Of particular
interest are the magneto-structural correlations in these complexes. It is reason-
able to start the discussion with Cu(hfac)2LNPyrEt. The structure of the “head-to-
head” chain in Cu(hfac)2LNPyrEt is shown in Fig. 8. The symmetry of the structure
does not change when the temperature is reduced (Table 1). The most remarkable

      Cu

      O

      N

Fig. 8. The structure of the “head-to-head” chain in Cu(hfac)2NITPyrEt
at 293 K; the methyl and trifluoromethyl groups and the hydrogen atoms
omitted for clarity.
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structural feature at 293 K is very short Cu–O and Cu–N axial distances – 2.237 and
2.375 Å, respectively, in the crystallographically independent centrosymmetric frag-
ments CuO6 and CuO4N2 (Table 2). As the temperature decreases the Cu-OL axial
distances in the CuO6 fragments gradually increase to 2.260 at 188 K and to 2.281 Å
at 115 K (Table 2). The Cu–Oh f ac distances in the CuO6 fragments also change. As
the axial distances along the OL–Cu–OL axis are lengthened, the Cu-Ohfac bonds
along one of the Ohfac–Cu–Ohfac directions are shortened by a comparable value
(∼0.043 Å). The shortening of the Cu–Ohfac distances from 2.028 to 1.985 Å leads
to equalization of all Cu–Ohfac bond lengths in the CuO6 fragments. At 188 K, the
long axis of the Cu bipyramid in the CuO4N2 fragment is shifted to another posi-
tion; the coordinated N atoms of the pyrazole heterocycles pass to the equatorial
position (dCu-N = 2.375–2.079 Å), replacing two Ohfac atoms to the axial positions
(dCu-O = 1.996–2.269 Å) (Table 2). As the temperature decreases further, the Cu–
NL distances in the CuO4N2 fragments shorten whereas the Cu–OL distances in the
CuO6 fragments lengthen. It is, in general, reasonable to consider that the structural
motion occurring in solid Cu(hfac)2LNPyrEt at reduced temperature is localized
within the CuO6 and CuO4N2 fragments, because the values of the angles and dis-
tances in the coordinated hfac-anions and LNPyrEt remain the same, within exper-
imental error. For the coordinated LNPyrEt these values are, moreover, almost the
same as those for the free ligand.

Figure 9 shows the temperature-dependence of the effective magnetic moment
of Cu(hfac)2LNPyrEt. At room temperature the value of µeff is close to the theo-
retical value of 2.45 µB. for a system of non-interacting spins of Cu2+ and nitrox-
ide based on the {Cu(hfac)2LNPyrEt} fragment. When the sample is cooled from
room temperature to 225 K, µeff gradually decreases to 2.4 µB, thus manifesting
non-trivial behavior. In all previously reported examples with the nitroxyl group
coordinated axially to the Cu2+ ion, µeff increased at low temperatures as a result
of a ferromagnetic exchange interaction. For the >N–•O–Cu2+–O•–N< exchange
cluster with rather long Cu–O distances (>2.4 Å) and an axially coordinated ni-
troxyl group the ferromagnetic exchange interaction has received a reliable theo-
retical explanation [15, 22]. It was noted, however, that shortening of the Cu–OO•−N
axial distances can lead to a situation where the antiferromagnetic exchange inter-
action prevails [22]. The unprecedented short Cu–OL axial distance (2.237 Å) in
the CuO6 octahedron is the reason for the predominant antiferromagnetic inter-
action in the >N–•O–Cu2+–O•–N< exchange clusters in solid Cu(hfac)2LNPyrEt
over the temperature range 225–300 K. It is worthy of note that the exchange in-
teraction is very sensitive to variation of the Cu–OL distance. Low-temperature
structural studies on Cu(hfac)2LNPyrEt showed that at 188 K the Cu-OL distance
lengthened by no more than ∼0.02 Å (Table 2) but that the antiferromagnetic in-
teraction in the >N–•O–Cu2+–O•–N< exchange cluster vanished completely. The
transition occurred abruptly at 220 K (Fig. 9). As the temperature decreased, the
Cu–OO•−N distance continued to increase, although the exchange interaction in the
>N–•O–Cu2+–O•–N< cluster remained ferromagnetic, because of which µeff in-
creased until the temperature of ∼25 K was reached. Below this temperature, µeff
started to decrease rapidly as a result of the antiferromagnetic intermolecular in-
teraction. The exchange parameters were estimated for Cu(hfac)2LNPyrEt in the
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Fig. 9. Experimental dependence µeff(T ) for
Cu(hfac)2NITPyrEt. The solid line is the the-
oretical curve described in the text.

Table 3. Spin-crossover transition temperatures and optimum parameters for the theoretical
curves of µeff(T ) for the chain compounds.

T (K) gCu J (cm−1) n J (cm−1)

Cu(hfac)2LMe 146 2.13 ± 0.03 8.8 ± 0.2 −0.11 ± 0.02
Cu(hfac)2LEt 220 2.00 ± 0.01 26 ± 6 −0.45 ± 0.05
Cu(hfac)2LPr 226 2.09 ± 0.02 −100 ± 2 −0.39 ± 0.03
Cu2(hfac)4LMeLEt 131 2.12 ± 0.03 8.7 ± 0.6 −0.26 ± 0.01

temperature range 2–175 K by use of the cluster approximation and an isotropic spin
Hamiltonian by the procedure suggested elsewhere [23]. Neglecting the relatively
weak copper-nitroxyl exchange interaction across the paramagnetic ligand hetero-
cycles, one can choose an exchange cluster {Cu2+. . . >N–•O–Cu2+–O•–N<}, where
the Cu2+ ions belong to the CuO4N2 and CuO6 groups. The resulting optimum val-
ues of the g factor, exchange interaction (J) in the >N–•O–Cu2+–O•–N< fragment,
and intermolecular interaction (n J ) are listed in Table 3. The calculated curve is
displayed as solid line in Fig. 9. In the approximation used n J is actually a value
averaged over the intermolecular interactions and the copper-nitroxyl interactions
across the paramagnetic ligand heterocycles.

The motif of the Cu(hfac)2LNPyrPr polymer chain is identical (“head-to-head”)
to that of Cu(hfac)2LNPyrEt (Fig. 8). The low-temperature bond length varia-
tion in the alternate CuO6 and CuO4N2 coordination sites differs essentially from
that of Cu(hfac)2LNPyrEt, however. As the temperature decreases all bonds of
the copper atoms with the donor atoms of the bridging LNPyrPr ligand (dCu−O
and dCu−N) are shortened (Table 2). The shortening is more pronounced for Cu–
OL than for Cu–NL. It is reasonable to assume that the shortening of the Cu–NL
bonds in Cu(hfac)2LNPyrPr is hindered by the propyl substituent, which is more
bulky than ethyl in Cu(hfac)2LNPyrEt. When a single crystal of Cu(hfac)2LNPyrPr
was cooled to 203 K, the distances between the copper atom and the coordinated
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nitroxyl oxygens in the CuO6 groups decreased by 0.173 ± 0.008 Å, and by an-
other 0.126 ± 0.007 Å at 115 K, whereas the distances between the copper atom
and the coordinated nitrogens of the pyrazole heterocycles in the CuO4N2 frag-
ments decreased by only 0.069±0.010 Å at 203 K and by another 0.052±0.008 Å at
115 K. Whereas the Cu–OL distances in the CuO6 fragments are significantly short-
ened, the Cu–Ohfac distances in the CuO6 groups along one of the Ohfac–Cu–Ohfac
“axes” are lengthened by 0.144 and 0.155 ± 0.010 Å at 203 K and by another 0.144
and 0.133 ± 0.008 Å at 115 K. The process that actually takes place in Jahn–Teller-
distorted CuO6 octahedral groups is replacement of the OL–Cu–OL “octahedron
axis”, which is elongated at room temperature and shortened by 0.598 ± 0.008 Å
on cooling, by the Ohfac–Cu–Ohfac “axis”, which is elongated at low temperature
and lengthened by 0.576 ± 0.008 Å on cooling. This is vital to further discussion
of the magnetic properties of Cu(hfac)2LNPyrPr. The observed low-temperature
rearrangement of the CuO6 coordination fragments reflects the gradual shift of the
nitroxyl oxygens from the axial to equatorial positions; this leads to strong antifer-
romagnetic exchange interactions in the >N–•O–Cu2+–O•–N< exchange clusters.
The µeff(T ) curve, which smoothly decayed with temperature, falls abruptly below
230 K to a plateau at µeff ≈ 1.8 µB (Fig. 10), indicating that the antiferromagnetic
interactions increase sharply in the clusters. This fall in µeff to 1.8 µB shows that
half of the total number of spins “vanish” in Cu(hfac)2LNPyrPr when the sam-
ple is cooled to 50 K. This is fully consistent with the decrease in the spin of the
>N–•O–Cu2+–O•–N< exchange cluster to S = 1/2 as a result of increased antifer-
romagnetic interaction. The exchange integral in the >N–•O–Cu2+–O•–N< clus-
ter was estimated at −100 cm−1 for the low-temperature range (Table 3; calculated
curve shown as solid line in Fig. 10). Because of the high value of antiferromagnetic
exchange, at T < 50 K the magnetic moment of Cu(hfac)2LNPyrPr is the sum of
the residual spins of the exchange cluster and the Cu2+ ions of the CuO4N2 frag-
ments. As for Cu(hfac)2LNPyrEt, µeff decreases in the range 300–250 K (Fig. 3).
Consequently, the distorted octahedral CuO6 fragments, and the analogous units

Fig. 10. Dependence µeff(T ) for
Cu(hfac)2NITPyrPr. The solid line is the
theoretical curve described in the text.
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Fig. 11. Experimental dependence µeff(T ) for
Cu(hfac)2NITPyrMe. The solid line is the the-
oretical curve received as described in the text.
Insert – hysteresis loop appearing as a result
of repeated heating-cooling cycles.

in Cu(hfac)2LNPyrEt, are responsible for the predominant antiferromagnetic ex-
change in the >N–•O–Cu2+–O•–N< clusters for the axially coordinated nitroxyl
oxygens. As in Cu(hfac)2LNPyrEt, the Cu–OL distances are short (2.317 Å) at room
temperature. These distances are, moreover, shortened to 2.144 Å when the temper-
ature is reduced to 203 K. A structural study on Cu(hfac)2LNPyrPr at 203 K clearly
demonstrated a tendency of the coordinated nitroxyl oxygens in the CuO6 units to
pass from the axial to equatorial positions (Table 2). This structural motion in the
CuO6 units is the reason for the halving of µeff starting from 50 K.

It is worth noting that at 203 K the symmetry of the structure changes (Table 1).
Structural solution for Cu(hfac)2LNPyrPr at this temperature enabled us to record
the formation of flattened CuO6 octahedra in the course of the transition, which is a
very rare occurrence for Cu2+ complexes (Cu-OL 2.143 and 2.144 Å, Cu-Ohfac 2.119,
2.130, 1.958, and 1.966 Å; Table 2). At 115 K, the initial symmetry of the structure
was restored (Table 1).

Whereas for Cu(hfac)2LNPyrPr µeff decreases smoothly with temperature, for
Cu(hfac)2LNPyrMe the µeff(T) curve reveals the presence of sharp transitions at
141 (cooling) and 146 (heating) K (Fig. 11). The only feature common to the mag-
netic behavior of the two compounds is that µeff is halved, indicating that half of
the total number of spins have “vanished”. At room temperature µeff corresponds
to two weakly coupled spins (S = 1/2); below 140 K it is close to the value typical
for one spin (S = 1/2) per Cu(hfac)2LNPyrMe fragment. As the temperature de-
creases, µeff gradually increases over the whole temperature range 2–300 K, which
is indirect evidence of the axial coordination of the nitroxyl O atoms to the Cu2+ ion
at rather large Cu–OL distances. The experimental µeff(T) dependence was used
to estimate the exchange integral. The experimental points in the transition region
were excluded, and the values of µeff below the transition temperature were pre-
liminarily re-normalized to the high-temperature range. As a result, the experiment
with the optimum parameters presented in Table 3 was well approximated by Cu2+–
O•–N< as an isolated exchange cluster model. The theoretical curve is presented in
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Fig. 12. Differential curves of
specific heat against temperature
for Cu(hfac)2NITPyrMe.

Fig. 11 as a solid line. The measurement cycle fulfilled at temperatures from those
of liquid helium to room temperature and back was repeated many times for the
same Cu(hfac)2LNPyrMe sample, and for samples obtained in different syntheses.
The µeff(T ) dependence was always reproduced with a narrow hysteresis loop of
5 K (Fig. 11, insert). The presence of a hysteresis is also confirmed by the differential
curves of specific heat variation for the Cu(hfac)2LNPyrMe sample (Fig. 12).

Structural study of Cu(hfac)2LNPyrMe at 293 K has revealed a chain poly-
mer structure of the compound (Fig. 13). The chain motif, however, differs es-
sentially from the chain motifs of Cu(hfac)2LNPyrEt and Cu(hfac)2LNPyrPr. In
Cu(hfac)2LNPyrMe the chains are arranged on the basis of the “head-to-tail” prin-
ciple. The copper atom is surrounded by two hfac ligands with short Cu–O distances
in the equatorial plane and by the NO oxygen and pyrazole heterocycle nitrogen,
belonging to different bridging LNPyrMe, in the axial positions. The Cu–OL dis-
tance to the axial nitroxyl oxygen is rather long (2.484 Å, Table 2); this explains the
predominance of the ferromagnetic exchange interaction in the Cu2+-O•-N< ex-

      Cu

      O

      N

Fig. 13. The structure of the “head-to-tail” chain in Cu(hfac)2NITPyrMe
at 293 K; methyl groups on the 2-imidazoline heterocycle, trifluoromethyl
groups, and hydrogen atoms have been omitted for clarity.
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change clusters. The shortest distances between the non-coordinated NO oxygens
are long, 4.104 Å, and the shortest interchain F. . . F contacts are at least 2.922 Å.
Consequently, the exchange interactions between the paramagnetic centers are con-
centrated in the Cu2+–O•–N< exchange clusters. This was taken into account when
choosing an isolated exchange cluster model for fitting the experimental µeff(T) de-
pendence.

Because all CuO5N coordination groups are identical at room temperature, the
“disappearance” of only half of the total number of spins might not be explained
without structural solution of the low-temperature phase (at T < 140 K). When
a single crystal of Cu(hfac)2LNPyrMe was cooled, however, its quality deterio-
rated sharply and so was no longer suitable for X-ray diffraction analysis. Therefore
full structure determination below the transition temperature was not performed.
We simply found that on cooling the unit cell symmetry decreased to triclinic and
the unit cell volume was reduced by ∼300 Å3. The nature of the magnetic spin
transition in Cu(hfac)2LNPyrMe was understood by investigating the mixed-ligand
complex Cu2(hfac)4(LNPyrMe,LNPyrEt), readily isolated as an individual com-
pound from a hexane solution with equimolar amounts of Cu(hfac)2LNPyrMe and
Cu(hfac)2LNPyrEt and characterized by the same shape of the µeff(T) dependence
(Fig. 14).

The structure of Cu2(hfac)4LNPyrMeLNPyrEt is similar to that of
Cu(hfac)2LNPyrMe. It is also built from infinite “head-to-tail” chains. Starting
from room temperature, however, it contains two crystallographically independent
copper atoms corresponding to CuO5N alternate coordination units of two types.
One has noticeably shorter Co–OL and Cu–NL axial distances (Table 2). The cop-
per atoms of these units form a considerably smaller angle (CuON 130.4◦) with the
coordinated nitroxyl fragment. At low temperature the OL and NL donor atoms of
these units pass to the equatorial position, whereas the axial positions are occupied
by two oxygen atoms of the hfac ligands. When the Cu2(hfac)4(LNPyrMeLNPyrEt)
crystal is cooled to 115 K, the Cu–OL distances decrease by 0.41 and the Cu–NL

Fig. 14. Dependence µeff(T) for Cu2(hfac)4
NITPyrMeNITPyrEt (calculated for the
Cu(hfac)2NITPyr fragment).
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distances by 0.27 Å. These are certainly substantial changes, the largest among all
structural rearrangements occurring in the crystal on cooling. In CuO5N units of
the other type the Cu–OL distances are shortened to a lesser extent (by 0.077 Å)
and the Cu–NL distances remain almost the same, within experimental error,
as shown by a single-crystal study of Cu2(hfac)4(LNPyrMeLNPyrEt) at 115 K.
The OL and NL atoms stay in the axial positions and all equatorial positions
are occupied by the Ohfac atoms, for which Cu–Ohfac < 2 Å. Another motion
recorded in the crystal on cooling is a change in the angle between the plane of
the pyrazole ring and the plane of the CN2 atoms of the O•–N–C=N–O fragment
of the imidazoline heterocycle. At room temperature the angle is the same (7.5◦),
within experimental error, for all bridging L. At 115 K the angle decreases for half
of the total number of the bridging L, containing the O atoms that are shifted from
the axial to equatorial position in the coordination polyhedron; for the other half,
which contain the O atoms remaining in the axial positions, the angle increases
(Table 2). For the latter ligands, moreover, the N–O bond lengths are equalized to
1.286 Å whereas for the former both N–O distances in the O•–N–C=N–O fragment
increase. Thus at 115 K the alternate bridging L, and the alternate coordination
polyhedra CuO5N, become non-equivalent. The only point which was not clarified
during the crystal solution for Cu2(hfac)4(LNPyrMe,LNPyrEt) was – which of the
ligands, LNPyrMe or LNPyrEt, undergoes these changes? For structural solution
the methyl group in the ethyl fragment was taken with a weight of 0.5 for both
crystallographically independent L.

The above structural changes occurring in Cu2(hfac)4(LNPyrMe,LNPyrEt) crys-
tals in the range from 293 to 115 K make it possible to readily explain the form
of the experimental µeff(T) dependence for this compound (Fig. 14). Because the
polymer chains have a “head-to-tail” motif, the exchange interactions between the
paramagnetic centers in the Cu2+–O•–N< exchange clusters prevail as they do in
Cu(hfac)2LNPyrMe. Because the oxygen atoms of the nitroxyl groups in the CuO5N
coordination sites are axial at room temperature, the exchange interactions in the
Cu2+–O•–N< clusters are ferromagnetic (Table 3 gives the estimated exchange pa-
rameters for Cu2(hfac)4(LNPyrMeLNPyrEt) and Fig. 14 shows the theoretical curve
(solid line)), leading to a smooth increase in µeff in the high-temperature phase in
the range from 300 to 170 K. The same is observed for the low-temperature phase
in the range from 80 to 10 K. As for Cu(hfac)2LNPyrMe, in the transition range
(170–180 K), the number of spins decreases by half. This is caused by the shift of the
coordinated OL atoms of the nitroxyl groups in half of the total number of CuO5N
units from the axial to equatorial position and, as a consequence, by the change of
the exchange interaction in the Cu2+–O•–N< clusters from weak ferromagnetic to
strong antiferromagnetic, leading to spin compensation in these units. Because both
Cu(hfac)2LNPyrMe and Cu2(hfac)4(LNPyrMeLNPyrEt) have the same (“head-to-
tail”) motif of polymer chains and the same shape of the µeff(T ) dependence, for the
low-temperature phase of Cu(hfac)2LNPyrMe one can admit an analogous struc-
tural rearrangement, leading to two structurally diverse coordination sites CuO5N
with essentially different exchange interactions in the Cu2+–O•–N< clusters.

Thus, a family of heterospin complexes of Cu(hfac)2 with pyrazole-substituted
nitronyl nitroxides has been found for which spin-crossover phenomena are ob-
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served in the solid state. Direct X-ray diffraction studies of the single crystals of the
complexes at different temperatures have revealed the structural rearrangements
leading to these phenomena; these are crucial to understanding the magnetic prop-
erties. Experimental evidence has been obtained to support the assumption that
the coordinated nitroxyl oxygens pass from axial to equatorial positions. The tran-
sition is accompanied by a change of the exchange interaction in the Cu2+–O•–N<

clusters from weak ferromagnetic for the axial coordination of the nitroxyl group
(dCu−O > 2.4 Å) to strong antiferromagnetic for the equatorial coordination of the
nitroxyl oxygen (dCu–O ≈ 2 Å), leading to spin compensation between the Cu2+
ion and the nitroxyl fragment. This rearrangement is dominated by the Jahn-Teller
nature of the Cu2+ ion, because of which the coordination site is constructed as an
elongated octahedron. The motif of the polymer chain (“head-to-tail” or “head-to-
head”) is unimportant for initiation of the thermally induced spin-crossover transi-
tions in the systems. In both the shortening of the Cu–O distance in the Cu2+–O•–
N< exchange cluster as a result of the shift of the coordinated oxygen atom from
the axial to equatorial position leads to halving of µeff (or to halving of the mag-
netic susceptibility) as recorded for Cu(hfac)2LNPyrPr, Cu(hfac)2LNPyrMe, and
Cu2(hfac)4(LNPyrMeLNPyrEt).

Rarely, it seems, the Cu–O axial distances in the Cu2+–O•–N< exchange clus-
ter in the octahedron around the central atom are rather short (2.2–2.35 Å) at
room temperature. This leads to predominant antiferromagnetic exchange in-
teractions, despite the axial coordination in the Cu2+–O•–N< clusters. At high
temperatures, therefore, µeff decreases for compounds (Cu(hfac)2LNPyrEt and
Cu(hfac)2LNPyrPr) with this structural feature. Still more exotic is the situation
when the structural rearrangement at the magnetic transition temperature leads to
a lengthening of Cu–O distances in the >N–•O–Cu2+–O•–N< exchange cluster,
resulting in a shift of exchange from antiferromagnetic to ferromagnetic. Yet these
coordination site dynamics are possible; we observed them for Cu(hfac)2LNPyrEt.
It is reasonable to believe that a structural rearrangement of this type occurred in
the heterospin chains studied by Gatteschi et al. [24].

At low temperature for all the compounds under study we observed a consider-
able decrease (by 5–6%) in the unit cell volume (Table 1). The absolute value of the
decrease was large (up to 300 Å) in accordance with the decrease in the size of the
unit cell. The greatest change was observed in the directions of infinite chains along
which shortening of the Cu. . . Cu distances was most substantial. The least amount of
compression or even lengthening at low temperatures (e. g. for Cu(hfac)2LNPyrPr)
was observed in the direction along which the Cu–Ohfac bonds lengthened. The
crystals under study have different mechanical stability at low temperature above
the spin-crossover transition point. The single crystals of Cu(hfac)2LNPyrMe gen-
erally cracked. The quality of the single crystals of Cu2(hfac)4(LNPyrMeLNPyrEt)
deteriorated considerably in the course of cooling and during the low-temperature
X-ray experiment; the peak profiles of single-crystal reflections broadened and were
not restored in their previous form at elevated temperature. The single crystals of
Cu(hfac)2LNPyrEt and Cu(hfac)2LNPyrPr with a polymer chain “head-to-head”
motif were described as “breathing” (during the cooling/heating cycles); after their
cooling followed by an X-ray structural analysis and heating to room tempera-
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ture the peak widths of their reflections were completely restored. The fact that
Cu(hfac)2LNPyrEt and Cu(hfac)2LNPyrPr single crystals as macro-objects can un-
dergo drastic reversible compression or expansion is another peculiarity of the het-
erospin compounds under discussion.

2.4 Conclusion

This short account illustrates the exceptional potential of nitronyl and imino nitrox-
ides in the design of molecule-based magnetic materials. The fundamental bridg-
ing property of these ligands enables the building of extended structures in which
one can “play” with the magnetic orbitals. But, importantly, the role of the sub-
stituent can be optimized to obtain specific structural arrangements and specific
magnetic properties. Thus, it is shown how nitrogen containing non-chelating sub-
stituents might afford discrete cyclic or 1D structures depending on the nature of
the heterocycle fragment. One should notice that these structural differences are
the consequence of slight differences in the orientation of nitrogen coordination. In
1D compounds structural variety is augmented by the possibilities of head-to-head
or head-to-tail coordination.

Such structural variety is reflected in magnetic properties. For copper(II) com-
plexes, in which the Jahn-Teller effect operates, oxyl coordination can result in ferro-
or antiferromagnetic behavior. Owing to the plasticity of the coordination sphere,
moreover, a complex might convert between these two types of behavior as a result
of a perturbation; this is a new family of “spin-crossover species”.

Heterospin systems based on Cu(II) complexes with nitroxides are extremely
interesting for performing detailed studies of a variety of effects associated with
spin-crossover phenomena. Whereas few heterospin complexes with these effects
have been found, magnetic transition regions were detected within a wide temper-
ature range. For compounds described here this range is 30–250 K. The potential
upper limit for the temperature of the spin-crossover-like phenomena generally ac-
cessible for such complexes is confined to the decomposition temperature, which is
roughly estimated at 350–400 K. As for classical spin-crossover complexes, investi-
gation of the relationship between the structural motion and the magnetic property
variation might provide unique information for further quantum chemical analy-
ses of the electronic structure of the exchange clusters. A valuable characteristic
of heterospin complexes capable of spin-crossover transitions is their easy prepara-
tion as high-quality single crystals with mechanical stability over a wide temperature
range. The single crystals are rich in easily functionalizable paramagnetic ligands.
This opens up prospects of detailed rationalization of all atomic motion in the space
of single crystals (i. e. structural dynamics in the range of phase transition) for de-
termination of factors governing the form of the µeff(T ) dependence, and for selec-
tive modification of magnetic transition characteristics by preliminary design of the
paramagnetic ligand of desired structure. Additional possibilities for design of such
complexes are afforded by solid solutions such as Cu2(hfac)4(LNPyrMe,LNPyrEt).
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Also, it seems quite feasible to determine the structural properties responsible for
the mechanical instability which sometimes arises in crystals cooled below the spin-
crossover transition temperature.

In our opinion, the exceptional ease of modification of the substituent makes
these spin transition compounds more attractive than the classical compounds based
on Fe or Co metal ions. In particular, use of chiral nitroxide ligands provides a unique
opportunity to include optical properties.
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3 Theoretical Study of the Electronic Structure and
Magnetic Interactions in Purely Organic Nitronyl
Nitroxide Crystals

Juan J. Novoa, Pilar Lafuente, Mercè Deumal, and Fernando Mota

3.1 Introduction

The nitronyl nitroxide radicals are a family of organic radicals giving rise to many
purely organic crystals with magnetic properties, among them bulk ferromagnets [1].
Their general structure, depicted in Fig. 1, is a five-membered ring in which two NO
radicals are linked to a sp2 carbon and to a R group, where R is a substituent, which
at its simplest is H, but can be a variety of groups including highly functionalized
aromatic rings (Figs. 2 and 3). Each NO group is also linked to a sp3 carbon. These
carbon atoms form a C–C bond with each other and each has two methyl groups
linked to it.

The magnetic properties of the purely organic crystals obtained from crystalliza-
tion of the nitronyl nitroxide radicals change with the substituent. Figure 2 includes
some examples of substituents the crystals of which have dominant ferromagnetic
properties; examples with antiferromagnetic properties are depicted in Fig. 3 [2].
Besides the radical, the magnetic properties of the purely organic crystals grown
for a given radical also depend on the polymorphic phase in which the crystal is
packed. This is a clear indication of the dependence of the magnetic intermolecular
interaction on the geometry of the crystal packing, i. e. intermolecular magnetic in-
teractions in nitronyl nitroxides depend on the relative orientation of the adjacent
radicals. Consequently, the rational design of purely organic crystals with dominant

Fig. 1. General chemical structure of the members of the
nitronyl nitroxide family of radicals. R is any substituent
(examples of substituents furnishing crystals with dominant
ferro or antiferromagnetism are given in Figs. 2 and 3).
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Fig. 2. Examples of substituents R for nitronyl nitroxides the crystals of which have domi-
nant ferromagnetic interactions. Below each structure we have indicated the refcode which
identifies the crystal in the Cambridge Crystallographic Database. When the crystal has not
been deposited in this database we have assigned to that structure an internal name which
begins with zero (details of the structures and the selection process are given elsewhere [2]).

ferro or antiferromagnetic interactions will be only possible when one has learned
how to control the way the crystals pack. This is a new branch of the supramolec-
ular chemistry called crystal engineering, which will not be treated here, despite
its intrinsic interest to the field. Instead the interested reader is directed to appro-
priate publications describing general knowledge in that field [3], the polymorphic
problem [4], and the possibility of predicting crystal packing from molecular struc-
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Fig. 3. As for Fig. 2, but for the substituents which give rise to crystals with dominant
antiferromagnetic interactions.

ture [5]. The crystal packing polymorphs of the simplest nitronyl nitroxide (the H-
substituted species) has been extensively studied [6], and many polymorphs were
found, among them those known experimentally. Finally, methods have been de-
veloped to enable the rationalization of theoretically predicted or experimentally
observed crystal packing, and good results have been obtained when the methods
were applied to the packing of many purely organic nitronyl nitroxides [7].

Given the large number of purely organic nitronyl nitroxide crystals with well
characterized structural and magnetic properties, we have selected this class of rad-
ical as prototypical for the study of the microscopic properties of the intermolecular
magnetic interaction. This kind of interaction, also called “through-space”, is differ-
ent from the “through-bond” interaction found in organometallic and coordination
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compounds, in which the magnetic centers are the metallic atoms (sometimes with
contributions from other atoms), and magnetic interaction is made possible by the
bonds that the non-metallic ligands create between the metallic centers. We should
point out that there have also been attempts to generate through-bond magnetism
in purely organic systems, by following the so called polymeric approach. In this
case, the magnetic centers would be organic radicals, which after a polymerization
process would be linked by covalent bonds, thus enabling the existence of though-
bond magnetic interactions between adjacent radicals. Until now this approach has
not succeed in achieving its final goal, although it has produced a variety of high-spin
oligomers [8].

Centering our attention on through-space magnetism, the view is far from clear
in many directions. From the quantum chemical point of view the origin of this in-
teraction is associated with the direct overlap of the orbitals of the adjacent radicals
involved in the interaction, although some experimental observations have been at-
tributed to the so-called dipolar interaction, in particular to the cooperative effect of
the collective dipolar interactions in layered magnets [9]. There is, however, no well
founded microscopic theoretical treatment capable of correlating the intermolecu-
lar geometry of a pair of radicals with their net magnetic behavior. As we will show
later, the most popular intermolecular mechanism yet, the so called McConnell-I
proposal [10], has a variety of weak points and failures when used to rationalize the
experimental properties of some crystals. First, it was designed specifically for π–π

interactions, although it is commonly used for other types of interaction. Second,
the value of the Ji j integrals, an important element of the McConnell-I proposal,
is not normally taken into consideration, and this will give rise to serious errors,
as we will discuss later. Given this situation, one can perform quantum mechan-
ical ab-initio computations on model systems to obtain the value of the low-high
spin energy separation, as a way of obtaining information about the nature of the
through-space magnetic interaction. In the rest of this chapter we will present re-
sults from these studies that give us insight into the nature and properties of the
through-space magnetic interaction.

3.2 Electronic Structure of Nitronyl Nitroxide Radicals

3.2.1 Fundamentals

Before discussing the electronic structure of these radicals, discussion of the method-
ology required to study the electronic properties of these radicals is required. We
will do so in a descriptive manner and focus on problems found in the application
of these methods to the study of nitronyl nitroxide radicals, omitting from this pre-
sentation unnecessary details of the methods; these are described in the original
work, to which the reader is referred.

The description of a radical by means of ab-initio methods requires careful choice
of the method to use. For such a task one must have a qualitative knowledge of
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the types of interaction present in the electronic structure of the compound being
described. These principles can be obtained by following an analysis such as that
presented in the next few paragraphs for the hydro-nitronyl nitroxide (HNN) rad-
ical, the simplest member of the nitronyl nitroxide family, in which R = H. This
radical has a five membered ring with two NO groups, two tetracoordinated C(sp3)
atoms, each with two methyl groups attached to them, and a tricoordinated C(sp2)
atom.

The electronic structure of this molecule can be rationalized by looking at the
electronic structure of the constituting groups, and then at the ways these groups are
linked. The structure of each of the groups present in the HNN radical is presented
in valence bond (VB) terminology in the diagrams of Fig. 4. Thus, for instance, the
C(sp2) atom forms three bonds (with the H atom, and the nearby two N atoms).
Each of these bonds involves a pair of electrons, one from each of the atoms of
the bond. The electrons of this pair are coupled into a closed-shell singlet (i. e., the
two are in the same orbital, one with spin α and the other with spin β, graphically
represented as upwards and downwards arrows). A C(sp2) atom has four valence
electrons and, given its topology, they must be placed among the three sp2 hybrids
and one pure p orbital, perpendicular to the plane of the sp2 hybrids. The three
sp2 hybrids are involved in making one C–H or two C–N bonds, thus requiring
the presence of one electron in each hybrid. The remaining electron of the carbon
atom must, therefore, be located in the pure p orbital, that is, the C(sp2) atom
is a radical with an electron in a p orbital perpendicular to the molecular plane.
Consequently, it is a π radical. Using the same arguments, the C(sp3) atoms, which
form four bonds, have their four electrons involved in bond formation, so each
electron is sitting in each of the sp3 hybrids. Consequently, these atoms have no
radical character. Finally, the NO groups have five valence electrons in the N atom
and six in the O atom. Three of the five electrons of the N atom are involved in
the sigma bonds formed by this atom (two C–N bonds and the N–O bond). They

Fig. 4. Electronic structure of the fragments
which constitute the HNN molecule, as ana-
lyzed using the valence bond (VB) method.
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are, therefore, located in the sp2 hybrids (defined by the geometry of the bonds).
The remaining pair of electrons must necessarily go to the pure p orbitals, singlet
paired (that is, one is an α electron and the other is a β electron). The topology of
the bonds of the O atom is compatible with sp, sp2 or sp3 hybridization. We have
chosen sp2 hybridization, but we could have chosen sp hybridization and reached
similar conclusions. In sp2 hybridization the six valence electrons of the O atom
are located as follows: one is placed in the sp2 hybrid pointing to the N atom, as
required for the formation of the N–O bond, and the remaining five electrons are
placed in the remaining two sp2 hybrids and the pure p orbital. One can, therefore,
form two singlet pairs, leaving one orbital with a single electron. In principle, this
orbital can be one of the hybrids or the p orbital, but ab-initio computations show
that the option more stable energetically is that leaving the single electron in the
pure p orbital. According to this description, therefore, the NO group is a π radical
with the radical electron located on the O atom. There is, however, another way of
writing this structure, in which one of the electrons of the pure p orbital of the N
atom is shifted to the pure p orbital of the O atom. This alternative form (called
resonant forms or structures) is quite stable energetically for the NO group. Their
existence and stability gives rise to delocalization of the electron over the O and N
atoms, as elaborate MCSCF ab-initio computations have shown [11, 12]. We must,
therefore, visualize the NO groups as a π radical center in which the electron is
delocalized on the two atoms of the center.

When the structure of each constituting group is known, one can rationalize the
electronic structure of the HNN radical by linking each group as they are in the
molecule by means of C–N or C–C bonds. Each bond involves a pair of singlet-
coupled electrons, as already mentioned, thus giving rise to the formation of a closed-
shell singlet. The only degrees of freedom defining the electronic structure of the
HNN molecule are, therefore, the orbitals of the part with radical behavior, i. e. the
two NO groups and the C(sp2) atom. We must now find the molecular orbitals of
each fragment involved in the interaction between the fragments, by combining the
atomic orbitals of each fragment. Thus for the NO the mixing of the two pure p
orbitals which have three electrons gives rise to a bonding and antibonding com-
bination, and the unpaired electron goes to the antibonding combination. Because
of this the NO radical has no double bond. The orbitals of the C(sp2) atom are
as depicted in Fig. 4. The antibonding orbital of each NO fragment and the pure
p orbital of the C(sp2) atom now couple to form the molecular orbitals. This is a
three orbital-three electron system within a C2 symmetry arrangement (in the crys-
tal geometry of the HNN molecule, this symmetry is slightly distorted). A system of
this type can give rise to the formation of the three molecular orbitals depicted in
Fig. 5, ordered energetically as bonding, non-bonding and antibonding, according
to the number of their nodes.

The most stable ordering of the three electrons in these orbitals is that indicated
in Fig. 5, which gives rise to a doublet. The quadruplet implies exciting one electron
from the φ1 bonding orbital to the φ3 antibonding orbital. It is interesting to note
that the shape of the singly occupied orbital (SOMO) has a node on the C(sp2)
atom. This node has important physical consequences. One is the low delocalization
of the π electrons of the ONCNO group along the atoms of the R substituent.
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Fig. 5. Molecular orbitals of the π orbitals
carrying unpaired electrons in the fragments
(the two NO groups and the C(sp2) atom).
This is a three orbital-three electron sys-
tem, which gives rise to bonding (φ1), non-
bonding (φ2), and antibonding (φ3) molecu-
lar orbitals. Besides these orbitals, the HNN
molecule has a variety of molecular orbitals
associated with the formation of the σ bonds
(C–N, C–C, . . . ), which combine among
themselves to produce orbitals adapted to
the symmetry of the molecule.

Another is the lack of spin on the C(sp2) atom in methods (e. g. the restricted-
open Hartree–Fock – ROHF – method) in which no spin polarization is allowed. It
is found experimentally that the C(sp2) atom has some spin [13–15]. One should,
therefore, use methods which permit the presence of spin polarization, by allowing
the mixture of the ground state wavefunction with some excited state wavefunctions
of the same multiplicity, obtained by exciting the electrons from the φ1 or φ2 orbitals
to the φ3 orbital [16]. We will now focus our attention on presenting an overview
of the methods which one can use for proper description of the electronic structure
of the nitronyl nitroxide radicals.

The simplest could be an ROHF method [18], which computes the optimum shape
of the φ1, φ2, and φ3 orbitals in a single determinant wavefunction, forcing the oc-
cupation of these three orbitals to be 2, 1, and 0. As mentioned above, the ROHF
method is incapable of accounting for the spin polarization of the C(sp2) atom, be-
cause this effect implies partial occupation of orbitals which have contribution in the
C(sp2) atom. Such a polarization effect can be described by use of the unrestricted
Hartree–Fock (UHF) method, a method which produces occupation numbers for
the orbitals similar to those obtained by use of CI methods [19], i. e. it gives rise
to fractional occupancies of the φ1, φ2 and φ3 orbitals. The wavefunction computed
with the UHF method, however, is not a pure spin state. For HNN it is a mixture
of doublet and quadruplet components (it is, consequently, not an eigenfunction of
the Ŝ2 operator) [18]. This is a serious problem for the description of some prop-
erties (for instance, the spin distribution in some atoms of the nitronyl nitroxides
is overestimated, or has the wrong sign [13, 20]), although some other properties
are well described (the optimum geometry, for instance).

To avoid the spin contamination present in the UHF wavefunction while allow-
ing for the presence of spin polarization, a serious alternative, albeit more costly, is
the MCSCF method [18]. Unlike the different forms of the Hartree–Fock method
discussed before, the MCSCF method is multi-configurational. In this method the
weights of the configurations and the shapes of the orbitals are simultaneously op-
timized. One popular formulation of the MCSCF method employs complete active
spaces (CAS(n,m)) in which the multi-configurational space is the result of placing
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n electrons in m orbitals, in all possible forms. This space includes the lowest-energy
configuration employed in the Hartree–Fock method, and the excited ones responsi-
ble for the spin polarization. For HNN this can be achieved by use of an orbital space
which includes the φ1, φ2, and φ3 orbitals and their electrons (a CAS(3,3) space).
Larger spaces which include the CAS(3,3) space, e. g. the CAS(7,7) space, are also
adequate. They also include the possible polarization present between the σ molec-
ular orbitals, and/or between σ and π orbitals. The occupation of the φ1, φ2, and φ3
orbitals is again fractional, with values within the 2.0–0.0 range. The MCSCF compu-
tations include only a small amount of correlation energy (that associated with the
active space). To account for the remaining correlation, one can perform a second-
order Moller–Plesset on the MCSCF wavefunction, a method normally known as
CASPT2 [21]. This method is known to provide a very good description of the en-
ergy splitting between the ground and excited states of the same and different spin
multiplicity in organic molecules and transition metal compounds [21]. Other mul-
tireference methods are the various levels of mono-reference Moller-Plesset (MP2,
MP3, . . . ), configuration interaction (CID, CISD, . . . ), or coupled cluster (CCSD,
CCSD(T), . . . ) methods [18]. These are based on the expansion up to some or-
der of the unrestricted Hartree–Fock wavefunction. These methods suffer from the
problem of the spin contamination of the expanded wavefunction. In many of these
methods, in particular in expansions at low order like the MP2, the degree of spin
contamination is similar to that found in the unrestricted Hartree–Fock wavefunc-
tion. These methods should, therefore, be used with caution, because physically one
is describing some average of the properties of the doublet and quadruplet states,
the average increasing with the amount of spin contamination.

One can eliminate the problem of spin contamination of the wavefunction by
using projected methods, in which all higher multiplicity components are exactly
projected out [22], or approximate projected methods, in which only a few of these
components are projected out (normally the next in multiplicity, because it has
been observed that this component is that inducing more spin contamination) [23].
Although the resulting projected wavefunction is not variational, when applied to
nitronyl nitroxides the results seem similar to those from MCSCF or other methods
of similar accuracy [24].

Besides the previous methods, one can resort to density-functional (DFT) meth-
ods [25]. These methods, based on the Hohenberg-Kohn theorems [26], enable the
use of the quantum theory to compute eigenstates directly in terms of the three-
dimensional single-particle monoelectronic density (ρ), instead of as a function of
the wavefunction (�). This speeds the computational process, the cost of which is
proportional to N 3 (where N is the size of the basis set) instead of the much higher
orders found in the Moller-Plesset, configuration interaction, or coupled cluster
methods. The final expression for the energy obtained within the DFT methodology
takes the form:

EDFT = trhP + (1/2)trPJ(P) + Eex(P) + Ecor(P) + V (1)

where h is the matrix representation of the monoelectronic Hamiltonian (kinetic
plus nuclear–electronic interaction), P is the density matrix, tr is the traze of the
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matrix, J(P) are the 〈ij|ij〉 Coulombic integrals, Eex(P) is the exchange functional,
and Ecor(P) is the correlation functional (It should be noted that the products hP
and PJ(P) both give rise to energetic contributions.) The Hartree–Fock energy can
be obtained as a special case of Eq. (1) by making Eex(P) = (1/2)trPK(P) and
Ecor(P) = 0(K(P) are the 〈ij|ji〉 exchange integrals, whose values depend on P).
The functionals used in the exchange and correlation parts are integrals of some
functions of the density and the gradient of the density. If the functional depends
only on the density, it is called local, whereas when it depends also on the gradient
of the density is called non-local. Many different functionals are proposed in the
literature for the exchange and correlation parts. Previous experience indicates that
the non-local functionals produce better results on chemical systems [27]. Among
the non-local functionals, the so called BLYP [28–30] and B3LYP [31,32] functionals
seem to be among the best, the second in particular.

When the UHF formulation of any of these two functionals is used to compute
the properties of the HNN molecule in its doublet ground state, it produces a wave-
function which has very small spin contamination from the quadruplet [13, 17]. This
gives validity to the predictions obtained with these functionals for HNN and other
nitronyl nitroxide radicals. It should, however, be noticed that small spin contam-
ination is not always observed. This has prompted some doubts on the validity of
the density-functional computations where such spin contamination is found. The
latest approach to this problem [21] is to accept that a single Kohn–Sham determi-
nant might lead to spin contamination for open-shell systems and still be a proper
solution, if the atomic spin density is properly described. The reason is that in the
Kohn-Sham method the density, and not the orbitals, has physical meaning and the
eigenvalues of the Ŝ2 operator for a given determinant are computed using the
orbitals.

3.2.2 Ab-initio Computation of the Electronic Structure
of Nitronyl Nitroxide Radicals

To illustrate the performance of the usual ab-initio methods in computing the elec-
tronic structure of the HNN molecule, and also to test the validity of the previous
qualitative description, we have computed the energy of the doublet ground state at
different computational levels. The quadruplet lies 81 kcal mol−1 above the doublet,
at the MCSCF(7,7)/6-31+G(d) level. For the HNN geometry found in the α-phase
crystal [33], a UHF/6-31+G(d) calculation [34] gives a wavefunction for the doublet
whose expectation value for the Ŝ2 operator is 1.13, compared with the 0.75 value of
a pure doublet state, as obtained from direct application of the S(S + 1) expression
when S = 1/2. The UHF wavefunction, therefore, has 12% quadruplet contam-
ination. A natural orbital analysis of the UHF wavefunction [19] gives the result
that all the orbitals are doubly occupied (within 0.01 error) except for three orbitals
whose occupations are 1.81, 1.00, and 0.19. The shape of these three orbitals, dis-
played in Fig. 6, corresponds to that predicted above for the φ1, φ2, and φ3 orbitals
in our qualitative analysis (Fig. 5). Orbitals of the same shape are obtained after a
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Fig. 6. Plot of the SOMO-1, SOMO, and LUMO orbitals of the HNN radical computed at
the UHF/6-31+G(d) level. The contours plotted are those in which the orbital has a value of
±0.1 atomic units. Shaded areas represent negative regions, and unshaded areas represent
positive regions.

ROHF/6-31+G(d) or MCSCF(7,7)/6-31+G(d) computation [35]. The MCSCF(7,7)
active space has 784 configuration state functions in it. Among these the dominating
configurations are the ROHF Hartree–Fock determinant, with a coefficient of 0.96,
and three configurations with coefficients 0.16, 0.15, and 0.09. All others have coef-
ficients <0.06. This means that the ROHF Hartree–Fock determinant describes the
basic structure of the system, and the spin polarization is introduced by these three
configurations of weight approximately 0.15. The occupation of the three orbitals in
the ROHF method is 2.00, 1.00, and 0.00, and in the MCSCF(7,7) computation be-
comes 1.91, 1.00, and 0.09. At the same time B3LYP/6-31+G(d) computations have
an S2 expectation value of 0.80, and the occupation of the φ1, φ2, and φ3 orbitals
is 1.98, 1.00, and 0.02 electrons. Remember that the S2 expectation value in DFT
computations has no physical significance (see comment above and Ref. [21]).

Although the overall shape of the orbitals computed by these methods seems sim-
ilar, there might be changes not observed under normal inspection. These changes
can, however, be quantified by computing the atomic charge on each atom; this de-
pends on the shape of the electron density, a property which depends on the shape of
the orbitals. Table 1 lists atomic charges obtained by a Mulliken population anal-
ysis of the wavefunction obtained by use of the UHF, MCSCF(7,7), and B3LYP
methods, using the 6-31+G(d) and cc-pVDZ [36] basis sets, and the experimental
geometry found in the α-HNN crystal. The results for UHF and MCSCF(7,7) will
be compared with the charges obtained by integrating the charge density over the
atomic region, defined according to Bader’s atoms-in-molecules (AIM) procedure
[37]. The results show the well known difference between the Mulliken and AIM
charges. They also show the dependence of the atomic charge values on the basis
set. Finally, they indicate that the density in the UHF and MCSCF(7,7) methods
is almost the same, but the B3LYP methods gives charges which differ from those
of the previous methods, although the qualitative picture is the same for all three
methods.
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Table 1. First row: atomic charges for the HNN radical computed from a Mulliken popula-
tion analysis of the UHF, MCSCF(7,7), and B3LYP wavefunctions, using the 6-31 + G(d)
basis set. Second row: similar results obtained by use of the cc-pVDZ basis set. Third row:
equivalent results from an AIM analysis of the cc-pVDZ wavefunctions. The geometry is
the experimental one for the α-phase of the crystal, and the basis set is the 6-31 + G(d)
basis. Values are given in atomic units.

Atom UHF MCSCF(7,7) B3LYP

H 0.27 0.27 0.22
0.08 0.08 −0.03
0.11 0.10

C(sp2) 0.33 0.33 0.47
0.35 0.35 0.32
1.19 1.22

N −0.14 −0.15 −0.28
−0.06 −0.04 0.02
−0.62 −0.63

O −0.22 −0.23 −0.04
−0.40 −0.41 −0.35
−0.56 −0.57

C(sp3) −0.30 −0.35 −0.51
−0.23 −0.24 −0.28

0.39 0.39

Table 2. Values of some representative values which define the geometry of the HNN
molecule. The experimental values are compared with those computed by full optimization
of the geometry of the doublet state of this radical at the UHF/6-31+G(d) MCSCF(7,7)/6-
31+G(d) and B3LYP/6-31+G(d) levels. Two values are given in the experimental column
for all the angles except one, because the experimental geometry lacks the C2 symmetry
found in the three theoretical geometry optimizations. Values of the distances are given in
Å, and those for the angles in degrees.

Parameter Experimental UHF MCSCF(7,7) B3LYP

C(sp2)–H 0.994 1.074 1.072 1.085
C(sp2)–N 1.337/1.329 1.349 1.341 1.345
N–O 1.279/1.289 1.240 1.238 1.267
N–C(sp3) 1.510/1.514 1.487 1.486 1.518
H–C(sp2)–N 122.6/127.3 124.9 124.5 123.9
C(sp2)–N–O 125.7/125.9 126.1 127.4 127.3
N–C(sp2)–N 110.1 110.2 111.0 112.2
O–N–C(sp3) 122.5/122.5 122.4 122.1 122.0

The results from geometry optimization for the HNN radical in its doublet state
performed at the UHF/6-31+G(d) and MCSCF(7,7)/6-31+G(d) levels are listed Ta-
ble 2, together with the experimental values from the α-HNN crystal. It is clear
that the UHF and MCSCF(7,7) values for this basis set are almost the same. The
computed results are different from the experimental values. The first concerns the
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Fig. 7. Valence bond description of the electronic
structure of the C(sp2)-X fragment, X being the
atom of the R substituent which is linked to the
C(sp2) atom of the five-membered ring of the
nitronyl nitroxides. The figure shows an example
in which R is a substituted aromatic ring and X
is a C(sp2) atom.

symmetry, which is lost in the experimental geometry, but is preserved (C2 group) in
the UHF and MCSCF(7,7) computations. The largest differences are, furthermore,
between C–H, N–O, and N–C(sp3) distances. The first discrepancy is most probably
because of the well known trend of X-ray fitting to give C–H distances which are
too short [38].

Let us now study the remaining members of the nitronyl nitroxide family. We
can rationalize the electronic structure of any nitronyl nitroxide by starting with
the electronic structure of the HNN radical and looking at the effect induced by
changing the R substituent from H to that found in the radical of interest. If the
atom of the R substituent linked to the C(sp2) atom (hereafter called X) has pure p
orbitals of the π type (e. g. the Cl atom, or another C(sp2) atom), these orbitals can
interact with the pure p orbitals of the C(sp2) atom. One ends up with the situation
depicted in Fig. 7, where the R substituent is linked to the five-membered ring C(sp2)
atom through another C(sp2) atom. The highest occupied orbital (which can be the
bonding or antibonding orbital, depending on the number of electrons sitting on
the pure p orbital of the X atom) will be that interacting with the pure p orbitals of
the NO fragments. For reasons of symmetry, however, the SOMO orbital (orbital
φ2 in Fig. 5) will remain unchanged, because of its node on the C(sp2) atom, and
the R fragment orbitals can only contribute to the SOMO-1 and LUMO orbitals
(φ1 and φ3 in Fig. 5). This is what ab-initio computations also tell us, as illustrated in
Fig. 8 for the phenyl-nitronyl nitroxide (PhNN) molecule. Although at the crystal
geometry [13a], the five-membered and six-membered rings of the PhNN molecule
are not coplanar (they are rotated 25◦ along the C–C bond connecting the five and
six-membered rings), there is a non-negligible contribution of the ring orbitals to
the SOMO-1 and LUMO orbitals. This enables the existence of spin polarization
through the SOMO–LUMO monoexcitations. Because the weight of the ROHF
Hartree–Fock determinant is again approximately 0.92, and those for the excited
configurations are approximately 0.15, this spin polarization mechanism does not
propagate the polarization very effectively, as we will discuss below. Consequently,
we should expect that all the nitronyl nitroxides should have a similar electronic
structure, because in the dominant determinant the distribution of the unpaired
electron is always similar. The situation is similar in all other nitronyl nitroxides
because of two experimental facts:
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Fig. 8. Plot of the SOMO-1, SOMO, and LUMO orbitals of the phenyl-nitronyl nitrox-
ide radical computed at the UHF/3-21G(d) level. The contours plotted are those in which
the orbital has a value of ±0.1 atomic units. Shaded areas represent negative regions and
unshaded areas represent positive regions.

• the five-membered ring geometry is almost the same in all the nitronyl nitroxide
radicals which crystallize as purely organic crystals and the ONCNO group is
practically coplanar in that ring [39]; and

• the torsion angle between the ONCNO group and the six-membered ring in these
crystals takes values between 30 and −30◦ [39], thus enabling some mixing be-
tween the orbitals of the C(sp2) atom of the ONCNO group and those of the
six-membered ring.
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3.2.3 Spin Distribution in Nitronyl Nitroxide Radicals

To understand the magnetic properties of the molecular crystals of a purely or-
ganic radical it is helpful to know how the spin is distributed along the isolated
radical, to define the spin-containing regions of the radical. The magnetic interac-
tions in monoatomic and diatomic radicals decrease exponentially with distance.
At the same time the McConnell-I model bases its predictions on the atomic spin
located on the atoms for which distances are shortest. For a proper control of the
magnetism in the purely organic nitronyl nitroxide crystals, therefore, it seems es-
sential to understand the form in which the spin is distributed along the atoms of
the radical, for any given radical, and also the ways in which that distribution can
be modified, if desired.

First we will establish some basic concepts related to the spin density. The spin
density is a physically observable quantity obtained at each point by subtracting the
electron density of the α electrons minus the electron density of the β electrons (it is
normally assumed that the number of α electrons (nα) is larger than the number of
β electrons (nβ) in systems where these two quantities are different; in this case, the
system is said to have an open shell electronic structure). As the electron density is
a monoelectronic function which depends on the Cartesian coordinates, so it is the
spin density. On the other hand, because the physical interpretation of the electron
density is the probability of finding an electron within an element of volume dv
(dv = dxdydz), the spin density should be interpreted as a monoelectronic function
which give us the probability of finding an excess of α electrons over β electrons
in any volume element. Integrated over the whole space this should give a number
equal to nα − nβ . Although the spin density is a three-dimensional property, like
the orbitals, it is depicted in two-dimensional representations, in one of two forms:

• by looking at the values of the spin density in a two dimensional plane of the
space – the values in this plane are then plotted as a contour map, similar to the
contour maps used in geography; alternatively, they can be plotted as a hill map;

• by cutting space in parallel surfaces and then plotting in each surface the contour
of the desired spin density value; this is a three dimensional map which extends
over the whole space spanned by the molecule.

The two plots are complementary in some forms. The second ways gives a vol-
ume enclosing the region in which the density has a value higher than a selected
cutoff, although it does not give any information on how large the density can be
within that volume or about its variation from one point to another (Fig. 9). The first
type of plot gives a detailed information about the variation of density on a plane,
but no information of the variation in the nearby planes. One therefore chooses
the representation depending on the information required. Occasionally the two
representations can be used simultaneously. The two type of representations are
illustrated in Fig. 9 for the HNN molecule. The spin density on the nucleus, a prop-
erty of interest in NMR or ESR, is the value of the spin density at a specific point,
the nucleus.

Another way of representing the distribution of spin in space is by means of the
atomic spin population. This quantity is obtained by adding the spin density over
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Fig. 9. Representation of the spin density of the HNN radical in its doublet state. The spin
d ensity is cut along the ONCNO plane of the molecule in two complementary forms: (a)
as countour lines (solid lines are for positive contours, while broken lines are for negative
values; The smallest contours correspond to a 0.001 e Å−3), and (b) as a 3D plot (the peaks
above the plane are positive, while those below the plane are negative; The two external
peaks are for the O atoms).
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the region of the space associated to each atom. Such a region can only be defined
in a precise way within the AIM methodology [36], although this procedure is com-
putationally very expensive. Consequently, a much more common approach is to
compute the atomic spin population on an atom by means of Mulliken population
analysis, computing the atomic charges on the atom coming from the α and β elec-
trons, and then subtracting these two values. Previous tests on the HNN molecule
[17] have indicated that the atomic spin population obtained by using Mulliken
population analysis is similar to that obtained by strict application of the Bader
AIM model, and we will see below that this is also true for other nitronyl nitroxide
radicals.

A word of caution should be introduced here when using atomic spin populations
– one should keep in mind that they represent the sum of all the values of the spin
density in a given region of the molecule. Consequently, they represent a sort of
average value of the density on that region. When the distribution is non uniform,
therefore, as for the spin distribution on atoms, there can be large variations in
the magnitude and sign of the spin in that region. For this reason the value of the
atomic spin on atoms with similar spin density on the nucleus can be very different,
i. e. the value of the spin density on the nucleus is not always proportional to or
representative of the atomic spin population on the corresponding atom. We will
see some examples in the following paragraphs.

We can now analyze the shape of the electron density maps. In a ROHF wavefunc-
tion, because the doubly occupied orbitals occupy the same part of space (because
of the restrictions inherent to the ROHF method), the spin density is equal to the
square of the SOMO orbital (Figs. 5 and 6). Therefore, the spin density has the
same shape as the SOMO orbital but without its negative regions (because corre-
sponds to excess α electrons). It therefore has a node in the C(sp2) atom, in contrast
with the experimental results, which established the existence of a region of nega-
tive density in the vicinity of the C(sp2) atom [13a, 14d, 15]. This node disappears
when the UHF method is used (projected or unprojected), or also at the MCSCF or
B3LYP level, because all of these methods allow the presence of spin polarization.
This is clearly illustrated by looking at the spin density distributions of Fig. 9, or at
the atomic spin populations of Table 3. Remarkably good agreement is obtained
between the B3LYP and MCSCF(7,7) results and the experimental results obtained
by projecting the spin density into atomic regions. The failure of the UHF method is
because of the spin contamination of the doublet, because when that contamination
was projected out the atomic spin population on the C(sp2) atom became −0.174 e.
These results are basis set-dependent, but numerical tests on smaller systems indi-
cated that they are similar when a double zeta plus polarization basis set is used
[17]. These results also indicate that most of the spin distribution is located in the
ONCNO group of atoms, with much smaller contribution on some of the C(sp3)
atoms, and negligible contributions on all H atoms. Finally, it is also interesting to
note the asymmetry of the atomic spin population, caused by the asymmetry of the
geometry (the full optimized symmetric radical does not have such asymmetry in
the atomic spin populations).

When the H of the HNN is replaced by another substituent, the spin distribution
does not change much from that described above for the HNN radical. This is illus-
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Table 3. Atomic spin population computed for the doublet state of the HNN radical (crystal
geometry at the UHF/6-31 + G(d) MCSCF(7,7)/6-31 + G(d) and B3LYP/6-31 + G(d) levels.
Two sets of values are given, because of the lack of symmetry of the crystal geometry of this
radical. The experimental values obtained for the equivalent atoms of the phenyl-nitronyl
nitroxide are also given for comparison. All the values are given in electrons.

Atom Experimental UHF MCSCF(7,7) B3LYP

H–C(sp2) 0.057 0.012 0.011
C(sp2) −0.121 −0.801 −0.182 −0.238
N 0.278 0.523/0.539 0.272/0.264 0.285/0.276
O 0.262 0.388/0.352 0.304/0.297 0.335/0.321
C(sp3)–ring −0.025 −0.019/0.003 −0.009/0.013 −0.008/0.002
C(sp3)–methyl −0.019/0.001 0.012/−0.001 0.014/−0.004
H–methyl 0.009 <0.003 <0.001 <0.001

trated by comparing the spin-density map of the HNN radical (Fig. 9) and that for
the PhNN radical (Fig. 10). The overall shape of the spin density distribution in the
five-membered ring region is the same, and the size of the region enclosing the ±0.01
density (in atomic units) threshold is very small on the atoms of the six-membered
ring (the R substituent). The shape of the PhNN map is also nearly identical to that
obtained in polarized-neutron diffraction experiments [13a], except for small details

Fig. 10. Tridimensional representation of
the isodensity surface whose spin density
is 0.001 e Å−3 for the phenyl-nitronyl ni-
troxide radical (light: regions of negative
density; dark: regions of positive density).
Two views of the same spin density distri-
bution are presented: lateral (upper dia-
gram) and from above (lower diagram).
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Table 4. Atomic spin population for some atoms of the phenyl-nitronyl nitroxide radical
computed using the B3LYP functional and the following five basis sets: (a) 6-31G(d), (b)
cc-pVDZ, (c) cc-pCVDZ, (d) EPR-II, and (e) IGLO-III. The Mulliken and AIM values are
given. The atoms selected are the ONCNO group of the five-membered ring (the different
NO groups are identified as N1O1 and N2O2), and the C atom of the six-membered ring
(C-six) linked to the C(sp2) atom of the ONCNO group. The basis set size is also given in
the last row.

Mulliken Bader
Atom a b c d e b c

C(sp2) −0.216 −0.203 −0.197 −0.215 −0.283 −0.154 −0.156
N1 0.295 0.285 0.284 0.291 0.340 0.270 0.276
O1 0.351 0.355 0.354 0.350 0.358 0.343 0.338
N2 0.264 0.254 0.253 0.263 0.305 0.242 0.249
O2 0.326 0.329 0.327 0.324 0.332 0.317 0.311
C–six 0.042 0.033 0.030 0.050 0.044 0.025 0.027
Size 289 323 459 408 816 323 408

in the six-membered ring region, probably associated with precision problems in
that region of the experiments. The same similarity is observed when comparing the
B3LYP/6-31+G(d) atomic spin populations for the HNN radical (C(sp2) = −0.238,
N = 0.285/0.276, O = 0.335/0.321 e−) and the atomic spin populations for the same
atoms in the PhNN radical (C(sp2) = −0.117, N = 0.209/0.233, O = 0.329/0.352 e−).
The values are smaller for all the atoms of the six-membered ring (all C atoms have
atomic spin populations whose absolute value is smaller than 0.017 e−, with sign al-
ternation relative to the five-membered C(sp2) atom; all H atoms have atomic spin
populations whose absolute values are smaller than 0.001 e−). These values of the
atomic spin populations remain almost invariant when the number of basis sets is
increased beyond the 6-31+G(d) set, as a numerical test with a variety of basis sets
has manifested (see Table 4, which collects the values of the atomic spin population
computed with basis sets of increasing quality on the ONCNO atoms of the five-
membered ring, together with the C atom of the six-membered ring linked to the
C(sp2) atom of the five-membered ring, as representative case) [40]. The quality
basis set is roughly proportional to the basis set size.

For more systematic sampling we performed the same study on all the radicals
of Figs. 2 and 3, i. e. the nitronyl nitroxides whose crystals are characterized by
dominant ferro- or antiferromagnetic interactions (45 radicals in total). Given the
large number of different radicals and the structural variety of their R substituent,
we devised a method of presenting the changes in the atomic spin population of
the functional groups in an unbiased form. After analyzing the results, we found
that a good way of representing the atomic spin population is by quoting the value
in the following four groups of atoms:
• the C(sp2) carbon of the five-membered ring;
• the whole ONCNO group;
• the remaining atoms of the five-membered ring; and
• the atoms of the R groups (see Figs. 2 and 3).
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Table 5. Atomic spin population (in atomic units) on regions of the α-nitronyl nitroxide
radicals included in the ferromagnetic subset. The first column lists the value on the five-
membered C(sp2) atoms, the second column on the ONCNO group, the third on the re-
maining atoms of the five-membered ring (r(5)-ONCNO in the text), and the last column
refers to the atomic spin population on the R group.

Refcode C(sp2) ONCNO r(5)-ONCNO R

0003QN −0.20 1.43 0.08 0.17
000MPY −0.21 1.43 0.10 0.10
000PPY −0.20 1.41 0.10 0.13
00DPNP −0.22 1.46 0.09 0.21
0PBRPH −0.21 1.42 0.10 0.15
HAFXOB −0.21 1.43 0.08 0.17
LICMIT −0.19 1.37 0.08 0.13
MACOPY −0.23 1.45 0.08 0.08
MMEPYB −0.21 1.45 0.10 0.17
PEFMES −0.22 1.51 0.10 0.45
PEYPUA −0.20 1.42 0.10 0.13
YISCEI −0.19 1.40 0.10 0.15
YISCOS −0.23 1.46 0.08 0.05
YISNIX −0.20 1.41 0.10 0.11
YIWSEC −0.19 1.44 0.08 0.15
YODBUO −0.20 1.34 0.10 0.21
YOMYII −0.17 1.34 0.08 0.09
YUJNEW −0.20 1.43 0.08 0.17
YULPOK −0.19 1.44 0.09 0.33
ZORHIX −0.21 1.43 0.08 0.11
Minimum −0.17 1.34 0.08 0.05
Maximum −0.23 1.46 0.10 0.45
Average −0.20 1.42 0.09 0.16
Standard deviation 0.02 0.04 0.01 0.09

Because the atomic spin population on the C(sp2) atom of the five-membered
ring is always negative, and on the NO atoms of the ONCNO groups is always
positive, a representative value of the amount of spin in the whole ONCNO group
is obtained by adding the absolute values of the atomic spin population for all atoms
of this group (from this number it is possible to obtain the NO groups population
by twice subtracting the atomic population in the C(sp2) atom). For similar reasons
a representative value of the spin in the remaining atoms of the five-membered
ring (which we call r(5)-ONCNO), can be obtained by adding the absolute values
of the atomic spin population on all participating atoms. The process was extended
also to the R group. The results for these sets of atoms [40] are collected in Table 5
for the ferromagnetic subset, and in Table 6, for the antiferromagnetic subset. The
total atomic spin population within the C(sp2), ONCNO and r(5)-ONCNO groups
is almost invariant between radicals, the most important changes being concentrated
on the R substituent. Thus, whereas the total atomic spin population on the five-
membered C(sp2) atom lies within the −0.16 to −0.23 range, the values in the R
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Table 6. The same data as in Table 5, but for the antiferromagnetic subset.

Refcode C(sp2) ONCNO r(5)-ONCNO R

0000AH −0.24 1.45 0.08 0.02
0000BR −0.20 1.40 0.09 0.02
000F5P −0.22 1.43 0.08 0.08
003CLP −0.22 1.46 0.08 0.17
00NNMA −0.20 1.41 0.08 0.17
00PCLP −0.20 1.42 0.08 0.15
0PCF3P −0.22 1.45 0.09 0.17
2CLPNN −0.22 1.44 0.08 0.08
2N5OHP −0.22 1.43 0.08 0.06
3CL4OH −0.21 1.42 0.08 0.17
5CL2OH −0.19 1.38 0.08 0.15
LASCAJ −0.21 1.43 0.09 0.25
LEMMAR −0.23 1.47 0.07 0.32
PEFMAO −0.21 1.46 0.07 0.25
SUKBIJ −0.20 1.43 0.08 0.08
SUKBOP −0.22 1.46 0.07 0.33
WILVIW10 −0.20 1.46 0.08 0.13
YISCIM −0.21 1.44 0.08 0.17
YOMYOO −0.20 1.43 0.08 0.15
YOMYUU −0.21 1.44 0.09 0.17
YOXMAZ −0.18 1.39 0.08 0.11
YOXMED −0.20 1.41 0.09 0.31
YULPAW −0.19 1.42 0.08 0.17
ZIPTAT −0.20 1.42 0.08 0.17
Minimum −0.18 1.38 0.07 0.02
Maximum −0.24 1.47 0.09 0.33
Average −0.21 1.43 0.08 0.16
Standard deviation 0.01 0.02 0.01 0.09

substituent go from 0.05 to 0.45 electrons. At the same time each NO group has
an average of 0.51 electrons, with very little change between the maximum and
minimum values. So, one can safely generalize the conclusions obtained from the
PhNN radical to all other nitronyl nitroxides. The main reasons for such a similar
behavior are:

• the similar shape of the SOMO orbitals, which allows the presence of spin po-
larization only through the SOMO-LUMO and (SOMO-1)-LUMO excitations;
and

• the similar energy difference between the SOMO and LUMO orbitals.

There are, however, some radicals (PEFMES, LEMMAR, SUKBOP, YOXMED
and YULPOK) for which there are relatively important amounts of atomic spin
populations on the atoms of the R substituent, the only reason being a change in
the SOMO-LUMO energy difference.
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Besides the atomic spin population, much theoretical and experimental work
has been performed to obtain the amount of spin density on the atomic nucleus.
The reason for such interest is the dependence of NMR and ESR spectra on that
magnitude. In particular, the hyperfine coupling constants (hfcc, represented by the
symbol aN), which define the position of the lines in the NMR or ESR spectra, is
related to the spin density at the corresponding nucleus (ρ(rN)) by the equation
[41]:

aN = 8π

3
ge

g0
gNβNρ(rN) (2)

where g0 is the isotropic g-value for the radical, ge the g-value for the free electron,
gN is the gyromagnetic nuclear ratio, and βN is the nuclear magneton of the nucleus
N.

The theoretical computation of hfcc has been performed previously on many
open-shell systems, among others on the first row atoms [42] and their hydrides
[43], the hydroxyl radical and five peroxy radicals [44], a subset of π -radicals [45],
and a variety of NO-containing radicals which included the HNN radical [46]. Also,
there are some interesting studies covering a wide variety of radicals [47]. The first
conclusion from these studies is the dependence of the computed hfcc on the method
and the basis set employed: good results are usually obtained by use of the QCISD
method [48] or the B3LYP density functional and basis set which describe well the
intermediate region between the core and the valence parts of the electron den-
sity. The basis sets of the last type are the IGLO-III [49], the EPR-II and EPR-III
basis sets of Barone [50], the core-valence correlation-consistent cc-pCVXZ [51],
and the s-uncontracted cc-us-pVXZ basis sets [52]. Even with these basis sets and
the QCSD method, however, the mean absolute deviation from the experimental
values in a subset of di-, tri-, and tetra-radicals can be as large as 4.5G, and a similar
value is obtained by using the B3LYP functional [47d]. Interestingly, the hfcc com-
puted for these radicals at the QCISD/6-311+G(2df,p) level are better than those
obtained at the QCISD/IGLO-III level; the two basis sets performed similarly at
the B3LYP level [47d]. One must, however, keep in mind that part of the success of
the B3LYP method in some systems has been attributed to fortuitous cancellation
of errors [42a]. This explains that higher quality basis sets do not always provide
hfcc values closer to the experimental results, as is found for the QCISD values.
This is clearly illustrated in Table 7, which collects the B3LYP hfcc computed for
the first row atoms [14d], using the same basis sets which give accurate hfcc results
at the QCISD level [42a]. In general, the values of the hfcc are strongly basis-set-
dependent, and large basis sets are needed to furnish, consistently, values close to
the experimental results (that is, the hfcc converge to a limit value when the size is
increased after some given quality). The EPR-II and EPR-III basis sets, considered
to give accurate results for DFT computed hfcc, reproduce the sign and magnitude
for all first row atoms, although errors of up to 5 Gauss are found in the B-O se-
ries, and even the time larger in the F atom. The errors computed with the QCISD
method for these two basis sets are not much smaller. This has prompted the gen-
eration of other basis sets, specifically designed for the study of hfcc, although in
the light of the results in Table 7 [42, 52], they are not much better than the EPR-II
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Table 7. Isotropic hfcc (in Gauss) computed for the first row atoms using the basis sets
indicated and the unrestricted formulation of the B3LYP method. The QCISD values of
Ref. [42a] are also given for comparison (second row).

Basis set B C N O F

IGLO-III 7.1 9.2 3.6 −9.3 72.9
EPR-II 3.9 7.7 2.9 −6.9 49.1

1.8 5.5 3.1 −8.5 84.1
EPR-III 6.2 8.2 3.5 −9.0 74.9

1.3 3.9 2.8 −8.7 88.2
cc-pCVDZ 2.3 0.1 −1.1 5.5 −74.2

−1.2 −2.3 −1.2 4.1 −43.9
cc-pCVTZ 3.5 5.8 2.5 −7.5 61.7

1.7 4.5 2.5 −8.1 77.0
aug-cc-pCVDZ 4.3 3.0 0.2 2.2 −46.0

3.7 4.2 1.6 −3.2 19.6
aug-cc-pCVTZ 4.6 7.5 3.2 −9.3 77.4

2.9 6.6 3.6 −10.9 104.1
cc-us-pVDZ 6.1 7.4 2.7 −6.6 48.6
cc-us-pVTZ 6.0 7.9 3.1 −7.9 62.9
aug- cc-us-pVDZ 8.0 10.4 4.0 −9.8 76.8
aug- cc-us-pVTZ 8.2 10.4 4.0 −9.9 77.3
Experimental 4.1 7.0 3.7 −12.3 107.8

or EPR-III basis sets, despite their higher computational effort. More efforts are
needed in the search for better basis sets for the theoretical computation of hfcc at
the DFT level for all atoms. The situation is not, however, as dark when compounds
within the nitronyl nitroxide family are studied. Then one finds that B3LYP/EPR-II
calculations reproduce well the order of magnitude and the trends in the experimen-
tal hfcc, when compared with values obtained from ESR experiments performed in
a variety of solvents, thus enabling correction for environmental effects by means
of linear correlations [14d], or against NMR values. Thus, for instance, when the
B3LYP hfcc results are compared with the solvent-independent experimental ESR
values for the HNN radical (Table 8) one finds that the EPR-II, cc-pCVTZ, cc-
uspVDZ, and cc-uspVTZ basis sets give results of similar quality, the quality of the
other three basis sets being surprisingly close to the EPR-II results. In the original
work [14d] it was also found that the IGLO-III, basis set provided good results,
as did the aug-cc-pVDZ basis set (the hfcc values computed with this basis set are
approximately 2 G higher than the EPR-II, but this is the size of the recommended
correction factor one should add to the B3LYP/EPR-II results to match the ex-
perimental values) [14b, 14c]. The B3LYP/EPR-II computations reproduce fairly
well the main features of the solvent-independent hfcc values with the exception of
those for the five-membered C(sp2)nucleus. All basis sets yield good estimates of
the order of magnitude of the average hfcc value for the H of the CH3 groups. Un-
fortunately, no experimental values are known for the O atoms, although it is again
interesting to note the similarity between the EPR-II, cc-pCVTZ, cc-us-pVDZ, and
cc-us-pVTZ basis sets results. We also extended our search to the B3LYP/cc-pVDZ
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Table 8. Calculated B3LYP isotropic hyperfine coupling constants (in Gauss) for the opti-
mized geometry of the HNN radical using a variety of basis sets. The basis set size is also
indicated.

Atom EPR-II cc-pvDZ cc-pvTZ cc-cvpvDZ cc-cvpvTZ cc-us-pvDZ cc-us-pvTZ

H 5.96 5.25 5.46 5.21 5.42 4.95 5.38
C(sp2) −15.05 −17.06 −10.44 −12.75 −13.75 −14.50 −14.40
N1 5.15 6.94 3.24 3.62 5.10 4.88 5.25
N2 5.15 6.94 3.24 3.62 5.10 4.88 5.25
O1 −9.49 −16.63 −6.04 −4.78 −9.96 −9.14 −9.96
O2 −9.49 −16.63 −6.04 −4.78 −9.96 −9.14 −9.96
C(sp3) −2.65 −2.80 −2.22 −2.50 −2.46 −2.60 −2.52
C(sp3) −2.65 −2.80 −2.22 −2.50 −2.46 −2.60 −2.52
C-me 3.53 3.26 3.18 3.10 3.32 3.19 3.31
C-me 1.56 1.71 1.56 1.52 1.60 1.55 1.58
C-me 3.53 3.26 3.18 3.10 3.32 3.19 3.31
C-me 1.56 1.71 1.56 1.52 1.60 1.55 1.58
H-me −0.24 −0.21 −0.22 −0.20 −0.21 −0.21 −0.21
H.me −0.32 −0.28 −0.31 −0.28 −0.32 −0.28 −0.32
H-me −0.25 −0.23 −0.21 −0.22 −0.22 −0.21 −0.22
H-me 0.42 0.32 0.44 0.32 0.42 0.35 0.41
H-me −0.67 −0.54 −0.62 −0.55 −0.63 −0.56 −0.62
H-me −0.38 −0.31 −0.33 −0.31 −0.33 −0.30 −0.34
H-me 0.32 0.28 0.31 0.28 0.32 0.28 0.32
H-me −0.25 −0.23 −0.21 −0.22 −0.22 −0.21 −0.22
H-me −0.24 −0.21 −0.22 −0.20 −0.21 −0.21 −0.21
H-methyl −0.38 −0.31 −0.33 −0.31 −0.33 −0.30 −0.34
H-methyl 0.42 0.32 0.44 0.32 0.42 0.35 0.41
H-methyl −0.67 −0.54 −0.62 −0.55 −0.63 −0.56 −0.62
Basis Size 143 119 512 133 655 161 604

hfcc and they showed a surprising good agreement with the solvent-independent
values obtained from ESR measurements [14d]. Similar conclusions can be reached
when comparing the results for the PhNN radical [14d] or the values computed for a
variety of phenyl-nitronyl nitroxide radicals and the experimental solid state NMR
results [17]. The torsion angle between the five and six-membered rings only has a
small effect on the hfcc values, and small changes are also found when going from
one nitronyl nitroxide to another, or when changing the solvent used.

Finally, comparison of the hfcc values of Table 8 and the atomic spin populations
of Table 3 shows that the size of the density on the nucleus is not always proportional
to the atomic spin population. This is not a surprising effect in the light of the
considerations above about the atomic spin populations.
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3.3 Magnetic Interactions in Purely Organic Molecular Crystals

3.3.1 Basics of the Magnetism in Purely Organic Molecular Crystals

“Magnetism at its bottom is not well understood” [53]. This assertion, written some
years ago, is still (at least partially) valid in relation to the mechanism of the magnetic
interaction in purely organic molecular magnets, because the microscopic mecha-
nism responsible for the presence of ferro or antiferromagnetism is not well un-
derstood in full nowadays, despite serious work performed in this field of research
during recent decades.

The basic foundation of magnetism is well known – particles with a net spin tend
to align in parallel or antiparallel fashion. The interaction responsible for the align-
ment is called magnetic interaction. In molecular systems, the electronic state of
which comprises only closed-shell electrons, there is only a very small magnetic in-
teraction, is called diamagnetism. Much more interesting, because of their strength,
are the interactions present when the molecules have net spins (that is, they are radi-
cals, biradicals, . . . ), in which one can distinguish two classes of magnetic interaction
between a pair of molecules: ferromagnetic interactions, when the ground state is a
triplet (the electrons are said, in a simplistic form, to order in a parallel manner, that
is, both in an α or β state; note, however, that this description is only valid for two
out of the three states present in the triplet state) [54], and antiferromagnetic inter-
actions, in which the ground state is a singlet (the electrons are, one in an α state,
and the other in a β state) [54]. Within a given crystal a molecule makes contact
with nearby radicals (of the same kind in a purely organic crystal, or of different
type in co-crystals). As we will see later, these interactions decrease exponentially
with distance, so a common approach has been to look at the shortest contacts made
by each molecule, that is, with their so-called nearest neighbors. If all these interac-
tions are of the same type and are propagated along the three directions of space
we have a three dimensional ferro or antiferromagnet (also called bulk ferro or an-
tiferromagnets). In most of these the magnetic interactions are of different kinds.
If, however, one type of interaction is much stronger than the others, one can talk
about crystals having dominant ferro or antiferromagnetic interactions. These crys-
tals can be identified, for instance, by the shape of the χT versus T curve as the
temperature decreases: a continuous exponential increase of χT after some value
of T is indicative of the presence of dominant ferromagnetic interactions; a contin-
uous exponential decrease indicates the existence of dominant antiferromagnetic
interactions. The presence of magnetic interactions can be noted only at low values
of T , in which the separation from the magnetic ground state to the first excited
state is lower than the thermal energy. Otherwise, the population in the ground
state decreases while that in the first excited state (and possibly others) increases.
At some given temperature there is a random number of pairs with ferro and anti-
ferromagnetic interactions, each pair changing in a random way from one state to
the other, and no net magnetic behavior can be observed. In these circumstances
one talks about paramagnetism, because the macroscopic systems behave like pairs
of magnetically non-interacting particles. There are many other interesting collec-
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tive magnetic phenomena besides ferro and antiferromagnetism (ferrimagnetism,
metamagnetism, spin glasses, . . . ) [1]. Their microscopic mechanism can be treated
as special cases of the ferro and antiferromagnetic situations described above; for
instance the two interacting spins have different S values, or are oriented in such a
way that their net component is not zero, or the energetic spacing between ground
and excited states enables special collective long-range behavior. Thus we will only
concentrate on the ferro and antiferromagnetic cases.

The entry door to modern molecular magnetism is to understand which orien-
tations of pairs of radicals give rise to ferromagnetic interactions and which give
antiferromagnetic interactions. Of all the possible general mechanisms envisaged
for magnetic interactions proposed in the literature (see Ref. [1], particularly Ref.
[1b]), some have been accepted as explaining intermolecular magnetic interactions –
the first mechanism or proposal of McConnell (consequently called the McConnell-
I mechanism or proposal) [10], the second mechanism or proposal of McConnell
(therefore called the McConnell-II mechanism or proposal) [55], and spin–dipolar
interactions [56]. Besides these three mechanisms, there is strong evidence that the
superexchange mechanism, originally applied to intramolecular (“through-bond”)
magnetic interactions, also applies to (“through-space”) magnetic interactions [9,
57]. Other mechanisms based on orbital theories (extension of Hund rules to the
intermolecular case, orthogonality of the intermolecular orbitals, . . . ) [1, 58] have
also been proposed and applied with various amounts of success, although we will
see later on that the magnetism in purely organic nitronyl nitroxide crystals usually
involves more than one orbital.

Let us briefly mention the basics of the previous mechanisms. The McConnell-I
mechanism is based on the sign of the atomic spin population of the atoms making
the shortest contacts between the interacting molecules. The McConnell-II mech-
anism is based on the importance of charge-transfer configurations, and indicates
that high spin multiplicity is favored by orbital degeneracy. Kollman and Kahn [59]
showed that the McConnell-II mechanism fails to describe the properties of the
bulk ferromagnet Fe(III)(C5Me5)+·

2 (TCNE)−·, and suggested that the McConnell-I
mechanism or some other model should be used instead. The spin-dipolar mech-
anism is based on the classical view of the spin as a dipole. Here, the interaction
between two spins is described, classically, as the interaction between two magnetic
dipoles. Its value depends on the distance as r−3 [56]. It should be noticed that
the classical model of the spin is included within any ab-initio quantum-mechanical
treatment of the interaction between two spins. The dipolar interactions are said to
be responsible for the presence of magnetic interactions in some layered materi-
als with large distances between the layers [9], although Kinoshita [60] numerically
dismissed its importance in nitronyl nitroxide crystals. Finally, the superexchange
mechanism has been proposed for hydrogen-bonded purely organic nitronyl ni-
troxide crystals and co-crystals in which there are no short contacts between the
spin-containing groups (the ONCNO groups) but in which magnetic interactions
are observed [57]. The magnetic interaction is postulated to take place through the
H...O hydrogen bonds, in such a way that some groups which have almost no spin on
them (see above) act like carriers for the magnetic interaction (by analogy with the
role played by the ligands in the magnetic metal–ligand–metal interactions) [1d].
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3.3.2 The McConnell-I Mechanism: A Rigorous Theoretical Analysis

Among all models of through-space interaction, by far the most popular is the
McConnell-I mechanism originally introduced by McConnell [10] in 1963 to ex-
plain intermolecular magnetic interactions between aromatic radicals. This author
suggested that the magnetic interactions present between two aromatic radicals A
and B could be described by the Heisenberg Hamiltonian:

ĤAB = −
∑

i∈A, j∈B

J AB
i j ŜA

i ŜB
j (3)

In this expression, J AB
i j are two-center exchange integrals of the form:

J AB
i j = [i j |i j] + 2〈i | j〉〈i | h | j〉 (4)

that is, they depend of the bi-electronic integrals [i j |i j], the overlap integrals 〈i |
j〉, and the monoelectronic integrals 〈i | h | j〉 (see Ref. [18] for their analytical
expression and physical meaning). ŜA

i ŜB
j , on the other hand, is the product of the

spin operator of atoms i and j from fragments A and B, respectively [61].
Equation (3) is a particular case of the general form of a Heisenberg Hamiltonian

[62], whose most general expression is of the form:

ĤAB = Q −
∑
i, j

Ji j

(
2Ŝi Ŝ j + 1

2
Îi j

)
(5)

The intra-fragment terms in this expression can be neglected making the assumption
that their contribution to the expectation values is the same between states.

Equation (3) was replaced, by McConnell, by the simplified expression:

ĤAB = −ŜA ŜB
∑

i∈A, j∈B

J AB
i j ρA

i ρB
j (6)

which is the equation normally employed when applying the McConnell-I mecha-
nism. In this expression, ŜA and ŜB are the total spin operators for the fragments
A and B, respectively, J AB

i j are two-center exchange integrals defined above, and
ρA

i and ρB
j are the products of the atomic spin population on atoms i and j (the

first from fragment A, and the second from fragment B). We have seen that the
Hamiltonian of Eq. (6) is phenomenological, because there is no strict mathemati-
cal way of deriving it from Eq. (3) [62]. Despite this, when the singlet-triplet energy
difference is computed using Eqs. (6) and (5) some similarities arise. This can be
illustrated for the example in which only one unpaired electron is found in frag-
ments A and B; their interaction can give rise to a singly degenerated singlet (S)
state or a triply degenerated triplet (T) state. Using the expression:

〈
ŜA ŜB

〉
= 1

2

[
(S(S + 1) − SA(SA + 1) − SB(SB + 1)

]
(7)
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it is possible to see that 〈ŜA ŜB〉T = 1/4 and 〈ŜA ŜB〉S = −3/4. From here, the
singlet-triplet energy difference computed from Eq. (6) is:

ES − ET = 〈
ĤAB〉S − 〈

ĤAB〉T =
∑

i∈A, j∈B

J AB
i j ρA

i ρB
j = J (8)

Equation (8) is the cornerstone of the McConnell-I mechanism. It predicts the
relative stability of the singlet and triplet states as a function of the exchange inte-
grals J AB

i j and the products of the atomic spin populations (ρA
i and ρB

j ). The value
of the exchange integrals is not known, although, in general, their sign is negative.
Consequently, it is assumed that a triplet ground state is obtained when the products
of atomic spin populations are also negative (that is, the two atomic spin popula-
tions have opposite signs). Furthermore, not all the pairs need to be considered.
If the J AB

i j or ρA
i ρB

j component of a term in the sum of Eq. (8) is negligible, this
term can be discarded. This explains why normally only those terms associated with
the shortest atom–atom contacts involving atoms with non-negligible atomic spin
populations are considered. In practical terms, this implies making the exchange in-
tegrals for all terms zero except for the shortest contacts. This assumption is based
on the fact that the exchange integrals decrease exponentially with the distance,
but we will see later that, given the angular dependence of the molecular orbitals,
these integrals depend on factors such as the symmetry and relative position of the
atoms within the fragments.

When the singlet-triplet energy difference is computed from Eq. (5), its value is
given by the equation:

ES − ET =
∑
i, j

Ji j

(
PS

i j − PT
i j

)
(9)

where Pi j are elements of the exchange density matrix of the singlet and triplet
states, given by the expectation values (of the singlet or triplet wavefunction):

Pi j =
〈
−

(
2Ŝi Ŝ j + 1

2
Îi j

)〉
(10)

where Îi j is the identity operator. For a single configuration of a perfectly paired
valence bond wavefunction [61], Pi j is equal to 1 when the pair is coupled into
a singlet, or −1 when the pair is coupled into a triplet. For uncoupled electrons
(that is, i and j belong to different spin-paired functions) it takes a value of −1/2.
Comparison of Eqs. (8) and (9) shows that predictions of the McConnell-I equation
are only strictly valid if the following association is possible:

ρA
i ρB

j ⇔ PS
i j − PT

i j (11)

There is no a priori reason why the product of atomic spin populations should be
related to the difference between the singlet and triplet exchange density matrices.
We have recently explored the possibility that in intermolecular interactions, at the
distances found in purely organic molecular crystals, the atomic spin density of the
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dimer could be approximated as a sum of that for each fragment, and that sum
would be different for the singlet and triplet states. We are currently testing this
possibility for several nitronyl nitroxides [63].

We can now apply the McConnell-I mechanism to nitronyl nitroxides, where
90% of the atomic spin population is located in the ONCNO groups, negative in
the C(sp2) atom and positive elsewhere. A common approach has been to look at
only the shortest contacts made by these groups. Usually, the McConnell-I equation
(Eq. 6) is employed without computing the J AB

i j and only taking into account the
shortest contacts. This is equivalent to assuming that these integrals are equal to
−1 for the shortest contacts and 0 for the remaining contacts. The equation is also
extended to non-π · · · π interactions. In these situations the only magnetic interac-
tions of importance are those in which the short contacts are between the atoms
of the ONCNO groups (because those have 90% of the atomic spin population).
In particular, these contacts will be antiferromagnetic when they are of the type
O · · · O, N · · · N, O · · · N, or C · · · C and ferromagnetic when the shortest contacts
are of the type C · · · O or C · · · N. The magnetic character of the remaining pairs of
interactions (H · · · O, · · ·) should be negligible.

The failure of these predictions are readily apparent for the hydrogen-bonded
nitronyl nitroxides in which there are no short contacts between the ONCNO groups
but for which magnetic behavior can be measured experimentally [57]. As men-
tioned above, the magnetism in these crystals has to be explained by use of an-
other intermolecular mechanism (superexchange). There are also other inconsis-
tencies between the McConnell-I predictions and the experimental behavior of
nitronyl nitroxides with short ONCNO · · · ONCNO contacts [64]. The failure of
the McConnell-I mechanism can also be demonstrated by comparing its predictions
with ab-initio results computed for simple model dimers, e. g. the H2NO···ONH2
dimer [65]. The H2NO · · · ONH2 dimer was studied by orienting the two molecules
as shown in the upper part of Fig. 11, with the NO groups pointing towards each
other. One of the groups was moved along the a-c plane, while preserving the four
NO · · · ON atoms in the same plane, and the H atoms are in symmetric positions
relative to that plane. The O · · · O distance was fixed at 3.0 Å. The results for the
singlet-triplet energy difference computed along that surface scan, obtained by use
of a variety of ab-initio methods, are plotted in the lower part of Fig. 11. They
show that, irrespective of the method used (B3LYP, MCSCF(6,4), CASPT2(6,4),
CCSD(T)), there is a change from singlet to triplet in the ground state as the dimer
is moved away from its collinear (NO · · · O angle = 180◦) to a perpendicular con-
formation (NO · · · O angle = 90◦). This contradicts what McConnell-I predicts –
according to this mechanism, the interaction should be antiferromagnetic at all the
points in Fig. 11.

There is an important point about the McConnell-I mechanism which must still
be addressed: why does it work in some cases but fail in others?. To answer to this
question we must know the source of the failure. We addressed this question by
using Eq. (9) to compute the singlet-triplet energy difference for the [2.2]paracy-
clophanes [66], after rigorous computation of the exchange integrals (J AB

i j ) and the
exchange density matrix. We studied the ortho, meta, and para conformers of this
radical, because they were previously used as experimental proof of the validity of
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Fig. 11. Top: Variation of the singlet-triplet energy difference found in the H2NO dimer as the
dimer is moved along the a–c plane. The energy difference has been computed by subtracting
the energy of the singlet and triplet states by use of the methods: MCSCF(6,4), CASPT2
on the MCSCF(6,4) computations, CCSD(T) and B3LYP. In the latter two cases the energy
of the singlet was that taken from broken-symmetry computations. Bottom: Definition of
the geometrical orientation of the molecules of the H2NO dimer.

the McConnell-I mechanism. Although our computations correctly predict the mul-
tiplicity of the ground state, when the components of Eq. (9) are analyzed in detail
one finds that the reason for the success of the McConnell-I model in this exam-
ple is cancellation of many J AB

i j (PS
i j − PT

i j ) terms associated with the non-shortest
contacts. This cancellation is a result of the small value of the J AB

i j integrals, as-
sociated with the high symmetry of the [2.2]paracyclophanes; this gives rise to the
direct alignment of many atoms of the nearby rings. This effect will, however, dis-
appear when the high symmetry is lost and many other J AB

i j integrals start to be
non-negligible [62]. Interestingly enough, the association between (PS

i j − PT
i j ) and

ρA
i ρB

j , Eq. (11), is correct for this molecule, so the biggest error seems to be the
form used to evaluate the exchange integrals (as mentioned before, in the normal
use of the McConnell-I mechanism, they are not evaluated).
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Summarizing the previous paragraphs, one cannot usually trust results from the
McConnell-I mechanism, at least without taking into account the numerical values
of the J AB

i j integrals. This is the main source of error introduced in its normal use,
according to the previous considerations. When the method works is because there
is a fortuitous situation which cancels many of these integrals, leaving only those
terms which also appear in the normal use of the McConnell-I mechanism. A more
accurate mechanism, capable of considering situations not currently properly han-
dled by the McConnell-I mechanism, is therefore needed. For such a task, we need
to obtain information about the nature of the through-space magnetic interactions
in an unbiased form. We will do so in the following sections, by combination of
ab-initio and crystallographic studies.

3.3.3 Theoretical Analysis of Through-space Intermolecular Interactions

To understand the intermolecular magnetic interaction between open-shell
molecules is helpful to have a qualitative idea about the shape of the potential
energy surface for the intermolecular interaction between the two radicals. The
simplest example of an interaction between radicals is the interaction between two
H atoms (Fig. 12). At very large distances the ground state corresponds to two iso-
lated H atoms (the A and B atoms), each with an electron in a 1s orbital, that is,
with a spatial configuration of the type 1sA(1)1sB(2). These electrons can each be
in a spin configuration of the type αα, αβ, βα or ββ, which gives rise to the forma-
tion of one singly degenerate singlet and a triply degenerate triplet state. Because
the two atoms are too far away to interact, the two states are energetically degen-
erate (Fig. 12, right). If the two atoms become closer the two 1s atomic orbitals
combine into bonding φ1 and antibonding φ2 molecular orbitals. If one electron
is placed in each of these molecular orbitals (φ1(1)φ2(2) configuration) and their
single occupancy is preserved, the singlet and triplet states (hereafter identified as
the S1 and T1 states) are expected to be repulsive, because the number of bonding
and antibonding orbitals is the same. One can, on the other hand, allow double
occupancy of the lowest energy bonding orbital, thus obtaining a φ1(1)φ1(2) con-
figuration (normally written in the compact form φ1(1)2). At short distances, the
φ1(1)2 configuration corresponds to the formation of a H–H bond, and gives rise
to a singlet state which we will identify as S0. The energy of the S0 is equal to the
energy of a hydrogen molecule in its ground state and, consequently, it lies below
the energy of two isolated H atoms. If, however, the double occupancy is preserved,
at large distances one dissociates into a 1s2

A configuration, i. e. one hydrogen atom
has two electrons and the other has none (this corresponds to dissociation into H−
and H+). Such a zwitterionic state is higher in energy than dissociation into two H
atoms in their 1s orbital, as shown in Fig. 12. There must, therefore, be a point at
which the S0 potential energy curve crosses the S1 and T1 curves, a sort of transition
state, at energies above the H plus H dissociation. When the S0 and S1 states are
allowed to mix (as in the MCSCF, CI or MP2 computations, or also partially in the
UHF computation) the curves obtained after the mix (called adiabatic curves) are
those indicated with broken lines. In this case, the transition state disappears, as is
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Fig. 12. Diagram showing variation of the energy with the intermolecular distance for the
states generated by the interaction of two monoelectronic radicals. The continuous lines
indicate the diabatic energy curves, that is, those obtained when the states are not allowed to
interact with other states when computing their energy. The discontinuous curves (adiabatic
curves, obtained when the diabatic states are allowed to interact) overlap the continuous
curves, except in the places where they are explicitly drawn. S0, S1 and T0 identify the lowest
energy singlet, first excited singlet, and ground state triplet states. No space symmetry was
considered.

found experimentally. The resulting wavefunction for the singlet state is, however,
a mixture of the S0 closed shell singlet state and the open shell S1 singlet state, with
different weights. Close to the minimum of the curve the dominant component of
the mixture is the closed shell component; at the S0–S1 crossing point it is practically
50% of each state; at large distances, it is dominated by the S1 state. It is easy to
define the weight of each state by looking at the occupation of the natural orbitals
(obtained from diagonalizing the first-order density matrix, as the eigenvalues). An
RHF will give an occupation of the φ1(1)φ2(2) orbitals of 2.0 and 0.0 at all the points
of the S0 curve. An UHF computation will, however, give values close to 2.0 and 0.0
near the minimum of the S0 curve, but progressively these values will go to 1.0 and
1.0, as the H-H distance is enlarged and the S0 and S1 states increase their mixing.

When the H atom (the simplest radical) is substituted by more complex radicals,
the process is slightly more complex, because one has to take into account the en-
ergetic effect induced by the non-bonding electrons. In such circumstances analysis
of the interactions and their energetic character is easier if the electronic structure
of the fragments is analyzed in valence-bond (VB) terms. We can understand the
main changes by looking at the interaction between two XH2 molecules directed
in such a way that their shortest contact is the X · · · ·X contact. We can start our
analysis with the simple case in which X = C. The C atom has four valence electrons
which, given the geometry of the CH2 molecule, can be placed in three sp2 hybrids
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Fig. 13. Valence-bond diagram showing the distribution of the electrons in the interaction
between two CH2 or two NH2 radicals in their ground state.

and in a pure p orbital perpendicular to these hybrids. Two of the sp2 electrons
form a bond against one 1s electron of an H atom. The electronic structure of the
CH2 molecule therefore contains two C–H bonds and two unpaired electrons, one
in an sp2 orbital and the other in a pure p orbital. This gives rise to a triplet or an
open-shell singlet state, the relative stability of which is not known before perform-
ing ab-initio computations. Alternatively the two electrons could be located either
in the sp2 hybrid or in the pure p orbital, thus giving rise to a closed-shell singlet.
Among all these possibilities, ab-initio computations tell us that the ground state is
the triplet generated from the (sp2)1p1 configuration; this is depicted in Fig. 13.

The electronic structure of the NH2 molecule is similar to that of CH2, but with
one more valence electron. This extra electron must go into one of the singly occu-
pied orbitals in the CH2. Of the two possibilities (sp2 hybrid or the pure p orbital),
the most stable is the sp2 hybrid (Fig. 13), and the ground state of the NH2 molecule
is of the π type (2B2). The orbitals of the H2NO fragment were qualitatively pre-
dicted before the use of VB arguments, and are similar to those for the NH2, with
the only difference that the SOMO is the bonding combination of the pure p or-
bitals of the O and N atoms (Fig. 4), and in H2NO there are two lone-pair electrons
on the O atom whereas in NH2 there is only one of these pairs.

Using the information on the electronic structure of the isolated fragments, one
can rationalize the structure of the two XH2 molecules in their ground state, as they
get closer, with their X atoms facing each other. One must keep in mind that as such
a decrease in distance occurs two singly occupied orbitals overlap, thus giving rise to
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Fig. 14. Variation with the intermolecular
distance of the total energy of the CH2,
NH2, and H2NO dimers for the lowest en-
ergy states, as computed by the MCSCF
method (see text for details of the compu-
tation).

bonding (φb) and antibonding (φa) dimer orbitals. If two electrons are placed in the
bonding orbitals (closed-shell singlet state) a new bond is formed whereas if the two
electrons are placed one in the bonding and the other in the antibonding orbital,
no new bond in formed. In the second alternative one can place the electrons in an
open-shell singlet state (i. e. a φbαφaβ configuration), or a triplet state (a φbαφaα

configuration). If the number of electrons in the fragment orbitals overlapping more
strongly is three or four, the interaction is repulsive and no new bond is ever formed,
whatever the state. This is clearly shown by study of the interaction energy curves
of Fig. 14, which depict the variation of that energy as a function of the X · · · X
distance for all or some of three orientations of the XH2 dimers – σσ orientation,
in which the two sp2 hybrids are overlapped, ππ orientation, in which the two pure
p orbitals of π symmetry are overlapped, and sp orientation, in which the sp2 hybrid
of one fragment overlaps the pure π orbital of the other fragment.
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Figure 14 shows the interaction energy computed at the MCSCF(6,4)/6-31 +
G(2d,2p) level for the CH2, NH2, and H2NO dimers. It is apparent that in the sin-
glet state of the σσ CH2 dimer, the aggregate is more stable than at dissociation,
because of the formation of two new bonds, giving rise to the H2C=CH2 molecule
in its ground state (the equilibrium distance being 1.33 Å). If a triplet state is se-
lected for the same dimer, one of the bonds is broken and the dimer is less stable.
Parallel behavior is observed for the ππ CH2 dimer, although at smaller interaction
energies. In the NH2 dimer only the singlet state of the ππ orientation is attrac-
tive at all distances. The other states are repulsive everywhere, or form a transition
state at short distance with another state, and then become stable (the σσ /singlet
and σπ /singlets). The triplet states are always repulsive. Finally, in the H2NO dimer
all states of the σσ orientation are repulsive, and only a very shallow minimum is
found in the ππ orientation at large distances (this is probably associated with the
so-called basis set superposition error, shortened as BSSE [67]). All of this indicates
a decrease in the tendency of the XH2 dimers of first row atoms to form bonds be-
tween the radicals as the number of lone pairs increases. In fact, no bonds have
yet been observed between the NO groups in nitronyl nitroxide crystals, in good
agreement with previous considerations.

The results in Fig. 14 can now be connected with the curves of Fig. 12. The curves
computed in Fig. 14 correspond to the adiabatic curves of Fig. 12 (those with broken
lines), because in all cases the singlet at short distance is a closed-shell state whereas
at large distances they dissociate into two neutral fragments (the diabatic curves, the
solid lines in Fig. 12, will dissociate into a double charged positive-negative dimer).
It is interesting to note that although the stability of the S0 curve has changed,
the physical phenomenon occurring is the same, and that depending on the inter-
fragment distance, the S0 state is a closed-shell singlet, or becomes an open-shell
singlet. This is clearly shown in Fig. 15, where the variation of the occupation number
of the SOMO and LUMO orbitals is shown for different distances. The distance at
which this change starts to be important depends on the stability of the S0 state –
more stable means changes at larger values of the r distance. The reason for such
behavior can be understood by looking at Fig. 12 – when the S0 solid curve is deeper,
the crossing of the S0 and S1 solid lines is shifted towards larger distances. This
behavior corresponds to the results of Fig. 15 – for the H2NO dimer, the stability
of which is very small, the occupation number of the φ1 and φ2 SOMO orbitals of the
fragments is equal to 1 up to very short distances (these distances are never reached
by the dimer, because they are well within the repulsive well of the potential energy
curve). In the CH2 and NH2 dimers, however, occupation of the SOMO orbitals
(φ1 and φ2, in the NH2 dimer, and φ1, φ2, φ3, and φ4, in the CH2 dimer) departs
from 1.0 at very large distances, and becomes 1.5 at approximately 3 Å. We can,
therefore, consider the CH2 and NH2 dimers to be dominated by their open-shell
singlet component up to 3 Å, whereas the H2NO dimer is an open-shell singlet up
to 1 Å.

The change in the nature of the singlet ground state from open-shell to closed-
shell has important implications for the nature of the magnetic interaction – a closed-
shell singlet will induce diamagnetic behavior when propagated over all the dimers
of the crystal, whereas an open-shell singlet will induce antiferromagnetic behavior.



3.3 Magnetic Interactions in Purely Organic Molecular Crystals 99

Fig. 15. Changes in the occupation of the
active orbitals, in the MCSCF computations,
as the distance is varied.

For a given X · · · X interaction one can adjust the character of the singlet by chang-
ing the value of the X · · · X distance found in the crystal. This can be achieved by
inducing the formation of hydrogen bonds in positions near the X atoms, by placing
the right functional groups in the molecule. These new hydrogen bonds will force
the X · · · X distance to take the desired value. Alternatively, one can change the
type of radical, thus moving the S0–S1 crossing towards the desired position.

Finally, it is necessary to mention that the previous qualitative analysis does not
give us any information on the position of the triplet curve relative to the singlet
curves. The T0 triplet curve is repulsive for the H · · · H example of Fig. 12, but can
be attractive in other circumstances, for instance the CH2 dimer (Fig. 14). For the
NH2 and H2NO dimers, more representative for intermolecular magnetic interac-



100 3 Theoretical Study of the Electronic Structure

tions because no σ bond is formed, the triplets are always repulsive. Finding the
regions in which their stability is greater than those of the S0 or S1 singlet is the
aim of intermolecular magnetic studies. Unfortunately, there is currently no simple
qualitative argument which can be used to find these regions.

A step towards understanding the triplet–singlet crossing responsible for the
ferro–antiferro macroscopic transition can be taken by analysis at the ab-initio
valence-bond level of the singlet–triplet crossing found in Fig. 11 for the angular
displacement of the H2NO dimer. We can do such analysis in valence-bond terms by
use of Eq. (9), when an appropriate valence-bond basis set has been selected, and
the values of the Jij exchange integrals and the (PS

i j −PT
i j ) matrix elements have been

computed on this basis. This can be achieved by using MCSCF(6,4) computations
after adequate transformations to go from the molecular-orbital representation into
the equivalent valence-bond form [68]. The singlet-triplet splitting can therefore be
rationalized, in valence bond terms, as the result of the interactions between the
three H2NO orbitals plotted in Fig. 16 – two σ orbitals, one located in the N atom
and the other in the O atom, and a π antibonding orbital, delocalized over the two
atoms. The valence-bond basis set is composed of the three orbitals in each of the
fragments.

Fig. 16. Shape of the valence-bond orbitals of
the H2NO fragment employed in the analysis
of Fig. 11.
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Analysis of the values of the Jij exchange integrals and the (PS
i j − PT

i j ) matrix
elements generated by these orbitals shows that the main changes of the angle are
associated with the inter-fragment elements coming from the π orbital of one frag-
ment and the sO orbital of the other fragment, so we will concentrate here on their
values (Table 9). The variation of the �(Jij Pij) π–π and sO–π energetic compo-
nents with the angle must be compared with the change reported in Fig. 11 for
the �E(S − T ) values, for which there is a maximum in the ferromagnetic prop-
erties at approximately 120◦ and the antiferromagnetic behavior at 180◦ and 90◦.
One should mention here that addition of the �(Ji j Pi j ) terms reproduces this vari-
ation at slightly higher energies (approx. 10 cm−1). The �(Ji j Pi j ) π–π energetic
components are always antiferromagnetic whereas the sO–π energetic components
are always ferromagnetic. The antiferromagnetic–ferromagnetic–antiferromagnetic
change is parallel to a decrease towards zero of the intermolecular �(Ji j Pi j ) π–π

elements and a simultaneous increase from zero of the intermolecular �(Ji j Pi j )

sO–π terms. The overall result comes from addition of these two opposite terms
– when the �(Ji j Pi j ) π–π elements dominate the interaction is antiferromagnetic
whereas the interaction is ferromagnetic when the dominating term is the �(Ji j Pi j )

sO–π term. As shown in Table 10, the changes in the sizes of the terms are mainly
associated with changes in the values of the Ji j sO–π integrals (last column of Ta-
ble 10) and with the simultaneous decrease in the values of the Ji j π–π integrals.
This variation is qualitatively similar to the change expected in the sO–π and π–π

overlap integrals. Our valence-bond analysis thus shows that the presence of fer-
romagnetism in the H2NO dimer of Fig. 11 is because of a subtle balance of the
SOMO–SOMO and (SOMO-1)–SOMO interactions, the first giving rise to antifer-

Table 9. Calculated values (in atomic units, and multiplied by 10−3) of the (Ji j Pi j ) terms
for the π and sN and sO valence bond orbitals of fragments 1 and 2, when the O · · · O-N
angle between the two fragments is equal to 150◦).

π sO(1) sN(1)

π −0.0716 0.1110 0.0001
sO(2) 0.0040 0.0013 −0.0002
sN(2) −0.0002 −0.0003 0.0000

Table 10. Variation with the O · · · O–N angle of the values of the inter-fragment (Ji j Pi j )

terms, Pi j , and Ji j for the π and sO valence-bond orbitals. The angles are given in degrees
and all the other values in atomic units.

θ (Ji j Pi j ) π–π (Ji j Pi j ) sO–π Pi j π–π Pi j sO–π Ji j π–π Ji j sO–π

180 −0.00011 0.00000 2.000 0.034 −0.00002 0.00000
150 −0.00007 0.00011 2.000 0.034 −0.00001 −0.00095
140 −0.00005 0.00011 2.000 −0.017 −0.00001 −0.00145
120 0.00000 0.00025 2.000 −0.017 0.00000 −0.00209
100 −0.00011 0.00020 2.000 0.035 −0.00003 −0.00164

90 −0.00033 0.00011 2.000 0.034 −0.00010 −0.00089
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romagnetism, the second to ferromagnetism. This change is driven by the changes
in the values of the Ji j integrals and the signs of the �Pi j sO–π elements.

The previous analysis has been focussed on a simple model dimer. Although this
dimer is not representative of the electronic structures found in all nitronyl nitroxide
radicals, or the variety of relative orientations of the NO groups, it has clarified
some of the physics of the problem, namely, that the McConnell-I mechanism is an
oversimplification of the real physics (it lacks sensible foundation and its normal
use fails to reproduce the behavior of a simple case). It was also shown that the
presence or absence of ferromagnetism in the H2NO dimer is because of a balance
between the SOMO–SOMO and (SOMO-1)–SOMO interactions, that is, does not
follow a one-orbital model. Finally, we have presented a curve-crossing model which
enables understanding of the basics of the intermolecular magnetic interaction in
simple terms. In the following sections, we will describe how to obtain information
about the nature of magnetic intermolecular interaction by combining results from
analysis of the crystal packing of purely organic molecular crystals and accurate
ab-initio computations on realistic nitronyl nitroxide aggregates.

3.3.4 Experimental Magneto-structural Correlations

The proper means of obtaining experimental magneto-structural correlations on
purely organic crystals is by unbiased analysis of the packing of crystals with the
same kind of dominant magnetic interactions over the usual range of temperatures
analyzed (usually 2–300 K). The largest magnetic interactions in these crystals can
be assumed to be always of the same as the dominant interactions (that is, all short
nearest-neighbor contacts between radicals in the crystal can be assumed to be of
the dominating type, or much smaller in size).

To obtain unbiased experimental magneto-structural correlations for nitronyl ni-
troxide magnetic crystals one must study the packing of all the crystals of this type
with dominant ferro or antiferromagnetic properties (the FM and AFM subsets, re-
spectively). From a combined search on the Cambridge Crystallographic Database
and from crystals provided by a variety of authors it is possible to select 23 FM
and 24 AFM crystals, all with R factors smaller than 0.1 or without large distor-
tion (and thus with well refined structures), omitting also those crystals containing
transition metals or which are co-crystals [2]. The radicals belonging to these two
subsets are those shown in Figs. 2 and 3, which also indicate the refcode (when
available, otherwise an internal refcode which begins with a zero was assigned).

When the two FM and AFM subsets are created it is possible to analyze the
packing of these crystals, looking at the relative disposition of the radicals in the
nearest-neighbor contacts. In accordance with previous studies of the spin distri-
bution, most of the spin population is located on the ONCNO group of the five-
membered ring. It thus seems natural to search first for magneto-structural correla-
tions involving the relative disposition of nearby ONCNO groups. One can define
the relative orientation of two ONCNO groups, given that the geometry of these
groups in different crystals is almost invariant [69], by means of the six geometrical
parameters of Fig. 17. The values of these parameters (Table 11 and Fig. 18) within
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Fig. 17. Geometrical parameters used to define
the relative position of two rigid ONCNO groups
in space.

Table 11. List of ONCNO · · · ONCNO contacts for crystals of the FM and AFM subsets
within the range of distances indicated. Percentages of ferro- or antiferromagnetic interac-
tions are also given.

Range (Å) Total contacts FM contacts % AFM contacts %

0–3 0 0 0 0 0
0–4 24 10 42 14 58
0–5 92 36 39 56 61
0–6 204 90 44 114 56
0–7 378 167 44 211 56
0–8 608 274 45 334 55
0–9 901 416 46 485 54
0–10 1312 611 47 701 53

the two subsets are distributed in a nearly uniform form over the range of values
for all classes of parameter. Two important facts emerge from this distribution:

• there is no correlation between the presence of short NO · · · ON contacts and
the presence of antiferromagnetism (Table 11), as was previously assumed; and

• there are no specific orientations of the ONCNO groups characteristic of either
ferro- or antiferromagnetic interactions (Fig. 18).

Both facts contradict the normal use of the McConnell-I mechanism, which pre-
dicts that short ONCNO · · · ONCNO contacts should lead to antiferromagnetism,



104 3 Theoretical Study of the Electronic Structure

Fig. 18. Distribution of values defining the ONCNO · · · ONCNO orientation (intermolecular
distance, D, angle A1, and dihedral angle T2) in nitronyl nitroxide crystals with dominant
ferro- or antiferromagnetic interactions. The parameters are defined in Fig. 17.

and the angular dependence of these interactions, as the O atom of one group gets
closer to the C atom of the other.

When a similar analysis is performed for the C-H · · · ONCNO contacts of the FM
and AFM subsets a similar conclusion is reached, i. e. there is no statistically signifi-
cant difference between the contacts found in the FM and the AFM subsets. One can
therefore conclude that no magneto-structural correlation based only on one type of
contact is possible for these crystals. This result is quite surprising, because one ex-
pects that the magnetic interaction should be affected by the geometry, as shown in
Fig. 11. The most likely explanation of this result is, therefore, that more than one type
of contact is playing a role in defining the nature of the dominant magnetic interaction,
i. e. it depends, for instance, on the relative geometry of the ONCNO · · · ONCNO
and the C–H · · · ONCNO contacts. Such a conclusion clearly goes against normal
understanding of McConnell-I predictions, because in order to exist such cooperat-
ing interactions, parts of the molecule which hold small spin populations (see above)
must participate in magnetic interactions. In particular, the magnetic cooperation
could occur through the hydrogen bond (C–H · · · ONCNO contacts), although we
have already found that the spin population on the H atoms is always very small,
irrespective of the H atom and radical considered (thus McConnell-I would predict
a small magnetic role for these contacts, unless large J values could be attributed
to such hydrogen bond interactions).

As a consequence of these facts we can rule out simple magneto-structural cor-
relations which try to predict magnetic behavior in terms of ONCNO · · · ONCNO
relative positions. The intermolecular interactions between nitronyl nitroxide rad-
icals result from a combined interaction involving more than one functional group
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of the molecule. This study does not, however, identify which groups participate,
their importance, and the geometrical dependence of the interactions induced by
each group. For such a task, we need to perform well designed theoretical studies
aimed at clarifying these points.

3.3.5 Theoretical Magneto-structural Correlations

The cooperativity between all the functional groups of the radicals in defining the
net character of the radical-radical magnetic interaction, reached in the previous
section, requires further testing before its final acceptance. We therefore decided to
perform theoretical studies aimed at establishing, without any doubt, the validity of
such a conclusion. In this section we summarize these studies, after briefly presenting
the methodology employed.

3.3.5.1 Theoretical Tools for the Study of Intermolecular Magnetic Interactions

The nature of the magnetic interaction between a pair of radicals can be established
by use of the Heisenberg Hamiltonian, as described in detail in the previous sections.
Although these methods are very efficient for analysis of the magnetic interaction,
currently, however, the use of Eqs. (6)–(9) to obtain quantitative results is com-
putationally more demanding than the use of molecular-orbital methods aimed at
the computation of the energy difference between the high spin and low spin states
(singlet and triplet for the interaction of doublet radicals).

The use of molecular-orbital methods to define the nature of the magnetic in-
teractions between radicals has been covered in detail in the other chapters of this
book [70], so we will only emphasize here some aspects related to the particularities
of the application of these methods to intermolecular interactions. As in the study of
magnetism in systems containing transition metals, two kinds of molecular-orbital
method can be used to study the magnetic character of purely organic radicals. The
first set of methods, which we can regard as conventional methods, is based on sep-
arate computation of the energy of the high spin and low spin states of interest.
Here, we can, in principle, use any of the methods (HF, CI, MCSCF, MP2, CCSD,
QCISD, . . . ) developed over the years for the study of molecules and aggregates, and
described in detail in well known texts [18]. The second kind of molecular-orbital
method, the so called dedicated methods [71], is designed for direct computation
of the energy difference between the high- and low-spin states, after obtaining the
analytical expression for that energy difference. The second kind of method has not
yet been applied to the study of through-space magnetic interactions, although their
application to the study of through-bond interactions has resulted in very promising
performance at lower cost than that of the use of the first class of methods [72]. We
will, therefore, focus on summarizing the properties and problems of conventional
methods, when applied to the study of through-space magnetism.

Two main problems are associated with the use of many of the conventional
methods - the presence of spin contamination in some of the states and the difficulty
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(or impossibility) of describing some of the states of interest in an appropriate form.
The first problem is associated with the use of methods whose wavefunctions are
not eigenvalues of the Ŝ2 operator. In general, this is true for all methods which use
an UHF determinant (UHF, UMP2, . . . ), with the special case of the unrestricted
version of the DFT functionals already mentioned. Because the UHF determinants
are not always eigenfunctions of the Ŝ2 operator, the computed wavefunction can
be an average of the wavefunction of the desired state and other states of higher
or lower spin multiplicity. The wavefunction is said to be spin contaminated, the
amount of that contamination being computed by looking at the expected value of
the Ŝ2 operator – in a pure spin state it should be equal to S(S + 1), where S is the
eigennumber defining the spin multiplicity of the state (defined as 2S + 1), i. e. is
equal to zero for a singlet, 1/2 for a doublet, one for a triplet, and so on. Thus, when
the expectation value of the Ŝ2 operator for a doublet (2S + 1 = 2, consequently
S = 1/2) differs from 3/4, the doublet is contaminated by states of higher multiplicity
(in this example the only possible source of contamination). The importance of this
spin contamination in our high–low spin computations is that the energy computed
with a spin contaminated wavefunction is an average of the energy of the pure
spin states, thus making the value of the energy difference unreliable. A possible
solution to the spin-contamination problem might be the use of spin-projected UHF
wavefunctions, exact or approximate [23], an approach followed by Yamaguchi in
the computation of the intermolecular magnetic interactions of a variety of systems
[73]. The spin-contamination problem can be completely avoided by use of methods
which, by construction, do not suffer from spin contamination and are capable of
describing any type of spin multiplicity. One example is the MCSCF method (the
name standing for multi-configurational self consistent field methods). This method
is capable of properly describing the sign of the high–low spin energy differences for
many intramolecular systems [20a], and it has recently been shown that it is also
capable of describing the sign of the difference for model intermolecular dimers
[74]. The quality of the MCSCF results can be improved to quantitative accuracy
when compared with experimental values or results from full-CI computations, by
including the dynamic correlation not taken into account by the MCSCF method.
One efficient means of achieving this is to perform a multi-reference second order
Moller-Plesset (MP2) computation on the MCSCF wavefunction, a method which
has been named CASPT2 [20a].

The second type of problem is encountered in the description of the open-shell
singlet state (that associated with a φ1α(1)φ2β(2) configuration), which cannot be
described within the framework of the RHF method, or by all the methods which
take its determinant as starting point. This configuration is, however, likely to be
that associated with the ground state S0 state, given the large distance between
the radicals and the small interaction energy involved. Besides the possible spin-
contamination problem described above, one must be sure the final solution has the
desired spin distribution (in the example mentioned here an α spin in one of the
radicals and a β spin in the other) because the UHF solution often results in no net
spin density on each center (i. e. one has ended in the closed-shell state). In such cir-
cumstances one must resort to the so called broken-symmetry approximation [75],
which enables one to end in the open-shell singlet by mixing the SOMO–LUMO
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orbitals (if they are of different symmetry, otherwise the SOMO and other orbital),
thus forcing a decrease in the symmetry of the Hamiltonian and wavefunction rela-
tive to the symmetry of the molecule. A broken solution of an UHF wavefunction is
known to be equivalent to a small CI calculation [75]. When such a wavefunction is
fed as a starting wavefunction into a coupled cluster method, e. g. the CCSD(T), and
the energy is compared with that computed with the same method from the UHF
triplet, it is possible to obtain reasonable results for singlet-triplet energy separation
in the H2NO dimer (Fig. 11), in contrast with accurate methods such as CASPT2,
which is known to give results close to the full-CI method in simple radical dimers
[74]. We will call these computations BS-CCSD(T).

The use of a broken-symmetry (BS) solution has also been found to be adequate
within the density-functional (DFT) formalism [25–27]. The DFT wavefunction of
many radical dimers has been found to result in small spin contamination (although
this is not always so). The energy difference between the broken-symmetry singlet
and the triplet wavefunctions is found to be similar to that from CASPT2 computa-
tions for the H2NO dimer (Fig. 11), at least when the B3LYP functional is employed
(BS-B3LYP computations). Similar behavior is also found in real nitronyl nitroxide
dimers, as we will see later. The advantage of these BS computations is that they take
only a fraction of the computational effort required for CASPT2 or BS-CCSD(T)
computations. This BS-DFT approximation has been extensively used, and given ex-
perimental results with very good reproducibility, for computation of the magnetism
in transition metal dimers [76]. Some controversy has, however, arisen on exact form
in which the singlet-triplet energy difference should be computed when the open-
shell singlet state is computed using the BS-DFT approximation [75, 72b]. Recent
evidence seems to be in favor of use neither of the spin-restricted Kohn-Sham for-
malism or and kind of spin-correction technique [76, 77], to avoid a contaminated
value of the spin for the Slater determinant. Here, in line with previous findings
for inorganic compounds, we will consider the expression �ES–T = EBS(S)− E(T ),
which is equivalent to saying that the BS-DFT method reproduces well the energy
of the open-shell singlet (the alternative solution is �ES–T = 2(EBS(S) − E(T )),
which is known to work better for Hartree–Fock wavefunctions, but the latest ev-
idence seems to indicate that this is not so in the DFT formalism). Thus, we will
not use such a factor in the following results. It is, in any case, worth noting that
the inclusion of such a factor does not change the sign of the high-low spin energy
difference.

3.3.5.2 Cooperativity in Magnetic Interactions –
the LICMIT and WILVIW10 Crystals

The LICMIT [78, 79] and WILVIW10 [80, 81] crystals are the two crystals of the
ferromagnetic and antiferromagnetic subsets studied in the Section 3.3.4 for which
the intermolecular ONCNO · · · ONCNO distances are shortest (3.157 and 3.158 Å,
respectively, although in the second crystal there is also another contact at 3.384 Å).
Besides the similarity in the values of the distances, the two ONCNO groups sep-
arated by the shortest distances in these two crystals are distributed in a nearly
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Fig. 19. Geometrical disposition of the radicals in the shortest ONCNO · · · ONCNO contacts
found in the LICMIT and WILVIW10 crystals. The H atom of the meta OH group is not
shown in LICMIT.

identical manner (Figs. 19 and 20). If, therefore, one assumes that the dominant
magnetic interaction is determined solely by the shortest ONCNO · · · ONCNO in-
teraction, it is clear that the magnetic interaction for the shortest contacts of the
LICMIT and WILVIW10 crystals should be of the same type. In the WILVIW10
crystal one could argue that the second contact at 3.384 Å could have the opposite
character, but, as mentioned above, if this is true one would have a crystal with com-
peting interactions of opposite sign. This is not what is found in the experimental
measurements. Furthermore, analysis of the geometry of the 3.384 Å contact indi-
cates that the relative orientation of the ONCNO groups is similar to that found
when the distance is 3.158 Å. There is, therefore, no reason to expect a different
magnetic nature for the shortest (and expectedly dominating) dimers on the ba-
sis of the ONCNO groups. This is also predicted by the McConnell-I mechanism,
which will predict those contacts as antiferromagnetic. Consequently, there are two
possible options:

• the magnetic interactions between the ONCNO groups in these three examples
are of different types, because of the small geometrical differences between these
dimers; or

• other groups, besides the ONCNO groups, also play a decisive role in defining
the character of the magnetic interactions in these three dimers.
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Fig. 20. Front, upper, and side view of the space disposition of the ONCNO groups in the
dimers of Fig. 19.

We can investigate the validity of the first option by computing the nature of the
ONCNO · · · ONCNO intermolecular interaction of the three dimers of Fig. 19 [82].
For this purpose one can take the real radical dimers and delete all the atoms except
those in the ONCNO groups, also adding hydrogens in the places where N–C(sp3)
or C(sp2)–C bonds occur in the real dimer, to preserve the oxidation state of the
atoms. The directions of the new N-H and C-H bonds are the same as that of the
substituted N–C(sp3) or C(sp2)–C bond, and their lengths are the optimum for each
ONH–CH–HNO fragment in a B3LYP/6-31+G(2d,2p) optimization. We performed
MCSCF(6,6)/6-31G and MCSCF(6,6)/6-31G(d) computations on the geometry of
these three ONH–CH–HNO model dimers to calculate the singlet–triplet energy
difference, after verifying that the addition of diffuse functions did not affect the sign
and magnitude of the singlet–triplet energy difference on tests performed on the
H2NO dimer. One must note here that the CAS(6,6) space was used in the MCSCF
computations, because each monomer requires a CAS(3,3) space to enable proper
description of the spin polarization in the ONCNO group (i. e. for the presence of
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Table 12. Values of the �ES–T energy difference (cm−1) computed for the (ONH-CH-
HNO)2 model dimer making the shortest contacts in the LICMIT and WILVIW10 crystals.
The MCSCF method was used, with the basis set indicated. The results are compared with
those from B3LYP broken-symmetry computations using the same basis set.

Crystal Basis set MCSCF CASPT2 B3LYP

LICMIT 6–31G −0.8 −2.0
6–31G(d) −1.0 −2.3 −1.8

WILVIW10 6–31G −2.2a −5.4a

−16.4b −14.0b

6–31G(d) −1.8a −0.8 −5.2a

−17.6b −9.7 −15.0b

aDimer with a ONCNO · · · ONCNO contact of 3.159 Å.
bDimer with a ONCNO · · · ONCNO contact of 3.383 Å.

negative spin on the central C(sp2) atom and positive spin on the two atoms of the
NO groups). The results of these MCSCF computations (Table 12) show that the
singlet is always the ground state for all three dimers, i. e. the magnetic interaction
is antiferromagnetic in character. Interestingly, for WILVIW10 the dimer with the
shortest O · · · O distance has not the strongest antiferromagnetic interaction, clearly
indicating the importance of the angular parameters in defining the strength of the
antiferromagnetic interactions in ONCNO · · · ONCNO interactions. The basis set
does not seem to have a substantial effect on the results. When the dynamic correla-
tion is taken into account by means of CASPT2 calculations, the results are almost
the same.

We repeated the previous computations at the broken-symmetry B3LYP level
(see above) to test the performance of this methodology. The nature of the interac-
tion (Table 12) is qualitatively the same as obtained previously at the MCSCF level,
and the size of the interaction is also very similar, although the B3LYP results slightly
exaggerate the antiferromagnetic nature of the interaction, consistent with the trend
previously found in Fig. 11 for the H2NO dimers. Taking that trend into account we
can therefore feel safe when applying the broken-symmetry B3LYP methodology to
the study of the magnetic character of the interaction between ONCNO-containing
dimers.

The MCSCF and B3LYP results on the LICMIT and WILVIW10 dimers indicate
that the three dimers of Fig. 19 have the same magnetic character. Thus, the only
remaining option is the second, i. e. that groups of the LICMIT and WILVIW10
radical with much smaller spin population than the ONCNO group cooperate in
establishing the nature of the magnetic interaction in the dimer. Such behavior,
if confirmed, will explain the lack of correlation between the relative disposition
of the ONCNO groups and the dominant magnetic character of the interactions
found experimentally when analyzing the packing of crystals with dominant ferro or
antiferromagnetic interactions. We therefore performed broken-symmetry B3LYP
computations in the three dimers of Fig. 19, using the full geometry of these dimers
and the 6-31+G(d) basis set. These computations gave a singlet–triplet energy dif-
ference of 1.3 cm−1 for the LICMIT dimer, fortuitously close to the experimental
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result (1.3 cm−1). For the shortest and largest contact in the WILVIW10 dimers these
results are −9.1 and −28.2 cm−1, respectively (to be compared with an experimen-
tal average energy difference of −102.9 cm−1). When these results are compared
with those obtained with the isolated ONCNO groups (Table 12) one has proof
of the important role that other groups, that hold approximately 10% of the spin
population, play in defining the character of the magnetic interaction in these rad-
icals. We thus have a numerical proof of the presence of cooperativity among the
spin-containing and non-spin-containing groups of these radicals in establishing the
nature of the magnetic interactions between their radical dimers.

As a final test on the validity of our analysis we computed the singlet-triplet en-
ergy difference for all the dimers of the first coordination sphere of the radicals in
the LICMIT and WILVIW10 crystals (these are the dimers with the shortest con-
tacts within the crystal). We also performed the calculations at the broken-symmetry
B3LYP/6-31+G(d) level [83]. There are five different kind of dimer in the first coor-
dination sphere of the LICMIT radical; the shortest O · · · O distances in these are,
in increasing order, 3.158, 4.594, 5.525, 5,856, and 6.294 Å. The singlet-triplet energy
difference for all these dimers in the LICMIT crystal are, in the same order, 1.34,
0.15, 0.02, −0.15, and 0.09 cm−1. The shortest contact interaction studied previously
is, therefore, by far the most dominant. Interestingly, all but one of these dimers
are of the ferromagnetic type. Although we will not discuss the values here, similar
results were also obtained for the WILVIW10 crystal.

3.3.5.3 Magnetic Patterns

If the magnetic interactions in the dimers depend on more than one functional group,
the relevant information is the number and relative disposition of these functional
groups in the two molecules. This type of information is given the general name
pattern in the field of crystal engineering [7c, 84]. When associated with magnetic
properties, therefore, we decided to name it magnetic pattern. Different patterns can
have similar or identical relative disposition of the ONCNO groups but different
disposition of other groups and thus their magnetic character will be different. This
is the source of the apparent inconsistencies found when analyzing the packing of
the crystals with dominant ferro or antiferromagnetic interactions as a function of
one functional group. In view of this new evidence one must learn how to perform
such analysis in terms of patterns.

One can assign the magnetic character of any given pattern by direct computa-
tion of the energy difference between the high and low spin states present in that
pattern. From that computation we know that the pattern for the shortest contact in
the LICMIT crystal (Fig. 19) is ferromagnetic, whereas the two found in the WIL-
VIW10 crystal are antiferromagnetic. It is, however, also useful to know the reasons
for that change in behavior, i. e. to identify what groups in the molecule cooperate
with the ONCNO · · · ONCNO magnetic interaction in each instance. To achieve this
one can progressively extract groups from the full dimer and compute the result-
ing effect in the low–high energy difference (in this example singlet–triplet). Thus,
if the LICMIT dimer is substituted by a ONH-CH-HNO....ONH-CR-HNO dimer
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(R = substituent), the resulting interaction between the LICMIT radical and the
ONH-CH-HNO radical is ferromagnetic, by a value of 0.31 cm−1, compared with the
1.3 cm−1 value previously found for the full LICMIT dimer, and the −1.8 cm−1 value
found for the (ONH–CH–HNO)2 dimer (all are broken-symmetry B3LYP compu-
tations). It is, therefore, the C–H and O–H groups present in the six-membered rings
that make the difference. In particular, it seems likely to be the effect of the short
O–H · · · ONCNO contacts. Such contacts are not possible in the WILVIW10 dimers,
although one finds short C(sp2)-H · · · ONCNO contacts in the shortest dimer (that
with a 3.158 Å O · · · O distance). Computation for the full dimer now gives a value
of -9.1 cm−1, that for the ONH–CH–HNO · · · ONH-CR-HNO dimer −5.7 cm−1,
and that for the (ONH–CH–HNO)2 dimer −5.2 cm−1 (all are broken-symmetry
B3LYP computations). The short C(sp2)-H · · · ONCNO contacts in WILVIW10 are,
therefore, not capable of changing the nature of the antiferromagnetic interaction
generated by the short ONCNO · · · ONCNO contacts. The same can be said about
the C(sp2)-H · · · ONCNO contacts found in the large-distance dimer of Fig. 19 (the
full dimer has an interaction of −28.2 cm−1 whereas the WILVIW10 · · · ONH-CH-
HNO dimer interaction is −20.9 cm−1, and the (ONH-CH-HNO)2 dimer interac-
tion is −15.0 cm−1). So, the ferromagnetic nature of the interactions found in the
dimer of the LICMIT crystal shown in Fig. 19 must be attributed to the short O-
H · · · ONCNO contacts present in that dimer.

When the character of the patterns has been properly characterized one can study
the magnetic pathways within the crystal, by identifying the location in the crystal
where these patterns are repeated. This will enable rationalization of the magnetism
in the magnetic crystals of interest. We can apply this procedure qualitatively to the
LICMIT crystal with the data given above. The data mentioned indicate the presence
of strong ferromagnetic interactions between dimers, and smaller ferromagnetic in-
teractions connecting these dimers with nearby dimers. We are currently working
on procedures to determine whether these data reproduce the χT − T behavior in
the experimental range of temperatures [85].
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operator. The determinant associated to αα will be represented as the |αα| determinant.
Among these four determinants, those associated to the αα and ββ spin-configurations
are eigenfunctions for the triplet. The other two configurations are not eigenfunctions of
the Ŝ2 operator. However, the combination of determinants |αα|−|ββ| is eigenfunction
of the triplet, while the |αα|+|ββ| is eigenfunction of the singlet. This is what is meant



116 3 Theoretical Study of the Electronic Structure

in a strict way, when one talks about spin alignments in a pair of electrons. One has
to keep in mind this, when graphically representing the triplet and singlet states by
two arrows in the same direction and in opposite directions, respectively.

[55] H. M. McConnell, Proc. Robert A. Welch Found. Conf. Chem. Res. 1967, 11, 144.
[56] (a) R. S: Drago, Physical Methods for Chemists, 2nd edition, Saunders College Pub-

lishing, Ft. Worth, 1992, chapter 9; (b) N.W. Ashcroft, N.D. Mermin, Solid State Physics,
Hold-Saunders Int. Ed., 1981.

[57] (a) J. Veciana, J. Cirujeda, C. Rovira, J. Vidal-Gancedo, Adv. Mater. 1994, 4, 1377; (b)
T. Akita, Y. Mazaki, K. Kobayashi, Chem. Commun. 1995, 1861; (c) T. Kawakami, S.
Takeda, W. Mori, K. Yamaguchi, Chem. Phys. Lett. 1996, 261, 129.

[58] An excellent overview of the orbital mechanisms has been given by J. Veciana in a
chapter of reference [1a] (pages 425-448).

[59] (a) C. Kollmar, M. Couty, O. Kahn, J. Am. Chem. Soc. 1991, 113, 7994; (b) C. Kollmar,
O. Kahn, Acc. Chem. Res. 1993, 26, 259.

[60] K. Takeda, K. Konishi, M. Tamura, M. Kinoshita, Mol. Cryst. Liq. Cryst. 1995, 273,
57. See also pages 463-464 of reference [1a], from a review of M. Kinoshita.

[61] Their general expression is given in: R. Pauncz, Spin Eigenfunctions, Plenum Press,
New York, 1979.

[62] M. Deumal, J. J. Novoa, M. J. Bearpark, P. Celani, M. Olivucci, M. A. Robb, J. Phys.
Chem. A, 1998, 102, 8404.

[63] P. Lafuente and J. J. Novoa, work in progress.
[64] M. Deumal, Ph. D. Thesis, Universitat de Barcelona, 1999.
[65] J. J. Novoa, M. Deumal, P. Lafuente, M. A. Robb, Mol. Cryst. Liq. Cryst. 1999, 335,

603.
[66] (a) A. Izuoka, S. Murata, T. Sugawara, H. Iwamura, J. Am. Chem. Soc. 1985, 107,

1786; (b) A. Izuoka, S. Murata, T. Sugawara, H. Iwamura, J. Am. Chem. Soc. 1987,
109, 2631.

[67] (a) S. F. Boys, F. Bernardi, Mol. Phys. 1970, 19, 553; (b) F. B. van Duijneveldt, J. G. C.
M. van Duijneveldt-van de Rijdt, J. H. van Lenthe, Chem. Rev. 1994, 94, 1873; (c) J. J.
Novoa, M. Planas, M.-H. Whangbo, Chem. Phys. Lett. 1994, 225, 240; (d) J. J. Novoa,
M. Planas, M. C. Rovira, Chem. Phys. Lett. 1996, 251, 33; (e) J. J. Novoa and M. Planas,
Chem. Phys. Lett., 1998,.285, 186.

[68] J. P. Malrieu et al, J. Phys. Chem. 1995, 99, 6417, as implemented by M. A. Robb and
M. Bearpark, (to be published).

[69] A detailed analysis of the intramolecular geometry of many nitronyl nitroxide radicals
has shown that the internal geometry of the ONCNO group is nearly invariant (see
reference 39).

[70] E. Ruiz et al. in J. S. Miller, M. Drillon (Eds.): Magnetism: From Molecules to Materials,
Vol. 2, Wiley-VCH, Weinheim 2001.

[71] J. Miralles, O. Castell, R. Caballol, J. P. Malrieu, Chem. Phys. 1993, 172, 33.
[72] See, for instance: (a) O. Castell, R. Caballol, R. Subra, A. Grand, J. Phys. Chem. 1995,

99, 154; (b) R. Caballol, F. Illas, I. De, P. R. Moreira, J. P. Malrieu, J. Phys. Chem. A
1997, 101, 7860.

[73] See, for instance: (a) K. Yamaguchi, Y. Toyoda, T. Fueno, Chem. Phys. Lett. 1989, 159,
459; (b) K. Yamaguchi, M. Okumura, J. Maki, T. Noro, H. Namimoto, M. Nakano, T.
Fueno, K. Nakasuji, Chem. Phys. Lett. 1992, 190, 353.

[74] S. Yamanaka, M. Okumura, K. Yamaguchi, K. Hirao, Chem. Phys. Lett. 1994, 225, 213.
[75] (a) L. Noodleman, J. Chem. Phys. 1981, 74, 5737; (b) L. Noodleman, E. Davidson,

Chem. Phys. 1986, 109, 131; (c) L. Noodleman, D. A. Case, Adv. Inorg. Chem. 1992,
38, 423.



References 117

[76] See, for instance: (a) J. Cano, P. Alemany, S. Alvarez, M. Verdaguer, E. Ruiz, Chem.
Eur. J. 1998, 4, 476; (b) E. Ruiz, J. Cano, S. Alvarez, P. Alemany, J. Am. Chem. Soc.
1998, 120, 11122; (c) E. Ruiz, J. Cano, S. Alvarez, P. Alemany, J. Comput. Chem. 1999,
20, 1391.

[77] See the extensive and detailed discussion in the work of: J. Gräfenstein, A. M. Hjerpe,
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4 Exact and Approximate Theoretical Techniques
for Quantum Magnetism in Low Dimensions

Swapan K. Pati, S. Ramasesha, and Diptiman Sen

4.1 Introduction

The non-relativistic Schrödinger equation of a system of electrons is spin-
independent. It therefore seems at first glance that the solutions of the Schrödinger
equation should also be spin-independent. Because the electrons are indistinguish-
able, however, forces the total wave function, a product of the spin wave function
and the spatial wave function, to be antisymmetric. This in turn implies that for two
electrons, a spatially symmetric wave function should be associated with an anti-
symmetric spin wave function and vice versa. The different charge distribution in the
spatially symmetric and antisymmetric wave functions leads to different coulomb
repulsions by virtue of which the spin states which are symmetric and antisymmetric
have different energies [1]. Dirac represented the splitting between the energies of
the two spin states by the spin operator −2J Ŝi · Ŝ j , where J is the exchange integral
involving the two spatial orbitals in which the two electrons are singly occupied. In
most open-shell atomic systems the exchange integral J is large enough to force
the total spin of the ground-state configuration to be the largest permissible value.
This in essence is Hund’s rule of maximum multiplicity and is also the reason why
we find transition and rare earth metal ions in high spin states in nature.

In solids containing transition metal or rare earth ions surrounded by ligands, the
relative alignment of the unpaired spins at the metal site is not at all obvious. To
understand this we should examine the possible pathways for the delocalization of
the valence electrons in the system. If the favorable delocalization pathways involve
antiparallel alignment of the metal-ion spins the nature of the exchange interaction
between the metal-ion spins is antiferromagnetic; otherwise it is ferromagnetic. This
is because delocalization of electrons reduces their kinetic energy and the ground
state therefore corresponds to an alignment of spins that enables maximum delo-
calization. This is indeed the reason why the ground state of a hydrogen molecule
is a spin singlet. In a system with degenerate partially occupied orbitals Hund’s
coupling favors high-spin alignment of the electrons on an ion. If delocalization
pathways exist that allow for these high-spin states in the process of delocalization,
alignment of the spins on two neighboring centers will be ferromagnetic. If delocal-
ization pathways exist only when these high-spin states are aligned antiparallel, one
would have an antiferromagnetic alignment of the spin. Thus, the overall nature of

Magnetism: Molecules to Materials IV. Edited by Joel S. Miller and Marc Drillon
Copyright c© 2002 Wiley-VCH Verlag GmbH & Co. KGaA

ISBNs: 3-527-30429-0 (Hardback); 3-527-60069-8 (Electronic)



120 4 Exact and Approximate Theoretical Techniques . . .

the spin alignment is governed by competition between the Hund’s coupling and
electron delocalization [2, 3].

Given a collection of spins, the exchange Hamiltonian for the system is written:

H =
∑

i j

Ji j Ŝi · Ŝ j (1)

where Ji j is the effective exchange integral for the interaction between the spins at
sites “i” and “ j”. Because the spins in the cluster arise from unpaired electrons of
a transition metal ion in a crystal field, it is natural to expect that the spin–orbit and
spin–spin interactions of the electrons in the ion could alter the nature of the total
spin on the ion by giving the net spin a preferred direction of orientation. Such a
situation can be easily handled by treating each Ji j as a vector and generalizing the
exchange Hamiltonian as:

H =
∑ (

J x
i j Ŝx

i Ŝx
j + J y

i j Ŝ y
i Ŝ y

j + J z
i j Ŝz

i Ŝz
j

)
(2)

Such a model is often referred to as the XY Z spin model [2]. Two extreme cases
are often studied:

• the spin is assumed to have no projection on the X–Y plane, in which case the
resulting model is the Ising model and corresponds to scalar spins; and

• the spin is assumed to have no projection on the z-axis, in which case we have
an XY model or a planar spin model.

The Ising model is a discrete classical model, because it consists of no non-
commuting operators in its Hamiltonian, whereas the XY model could be classical
or quantum mechanical. Usually, when dealing with large site spin systems, it is not
uncommon to assume that the spins are classical, in the spirit of Bohr’s correspon-
dence principle.

In the crystalline state, the spins in the solid would be arranged on a lattice. If
the exchange interaction is predominant between spins along a single crystalline
direction, the model could be treated as a one dimensional array of spins. There
are many examples of solids for which this is true [4]. Likewise, it is also possible
that the interactions amongst spins is large along two crystallographic directions
and weak along a third direction; this would result in two-dimensional spin system
[5].

In this review article, we will mainly concern ourselves with the study of isotropic
spin clusters and one-dimensional spin systems, sometimes in the presence of an
external magnetic field. We will be mostly interested in properties of the ground
state and low-lying excitations, because these are the states which govern the low-
temperature properties of systems such as the specific heat and magnetic susceptibil-
ity. The symmetries of a system often enable us to characterize the energy eigenstates
in terms of quantum numbers such as the total spin, Stot, the component of the to-
tal spin along some particular direction, say, Stot,z , spin parity (which is a symmetry
for states with Stot,z = 0), the wave number, k, for a translation-invariant system,
and possibly other spatial symmetries depending on the structure. We will discuss



4.2 Exact Calculations 121

below how the use of symmetries can help to reduce the numerical effort required
to study the low-energy states.

In the next two sections we introduce some exact numerical methods and describe
the application of these methods to magnetic clusters. In Section 4.4, we discuss
two analytical methods which use field theoretic approximations. In Section 4.5, we
describe an innovative way of solving the spin Hamiltonians, which goes beyond
the conventional techniques and is based on the density matrix renormalization
group (DMRG) theory. Various applications of DMRG to the properties of low-
dimensional extended chains are described in Sections 4.6 to 4.8.

4.2 Exact Calculations

The properties of a spin Hamiltonian can be computed from the eigenstates of the
Hamiltonian, which are in turn obtained by setting up the Hamiltonian matrix in a
suitable basis and diagonalizing it thereafter. Although the procedure itself is quite
straightforward, the space spanned by the Hamiltonian rapidly increases with the
number of the spins in the system. The Fock space dimensionality of a system of n
spins with spin si is given by:

DF =
n∏

i=1

(2Si + 1) (3)

The Hamiltonian matrix is block-diagonal in structure with each block corre-
sponding to specified values of the quantities conserved by the Hamiltonian. Thus,
for an isotropic spin system, the z-component of the total spin, MS , and the total
spin S are conserved. Restricting the Fock space to specified values of MS and S
gives Hilbert spaces whose dimensionalities are smaller than the Fock space dimen-
sionality.

Whereas constructing spin basis functions which are eigenstates of the total Ŝz

operator is quite simple, construction of spin-adapted functions (SAF, eigenstates
of the total Ŝ2 operator) is not direct. Perhaps the simplest and chemically most
appealing way of constructing SAF is by the valence bond (VB) method which
uses the Rumer–Pauling rules. This method is best illustrated by applying it to a
system of 2n spins, each possessing a spin of half, in the total spin S = 0 sector. A
total spin singlet can be formed by choosing pairs of sites and spin-coupling each
of these obtain a singlet. The product of these singlet pairs will be a spin eigenstate
of the operator Ŝ2

total. This is illustrated in Fig. 1. There are, however, more ways
to spin-couple in pairs than the number of linearly independent singlet states, e. g.
the state |3〉 in Fig. 1 can be expressed as a linear combination of the states |1〉
and |2〉. The overcompleteness can be avoided by resorting to the Rumer–Pauling
rules. To implement this rule we arrange the 2n spins at the vertices of a regular
2n-gon and draw lines between pairs of sites that are singlet-paired. According to
the Rumer–Pauling rule the subset of these encompassing all diagrams (to be called
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Fig. 1. A schematic representation of the VB dia-
grams for eight spin-1/2 objects. States |1〉 and |2〉
are legal VB diagrams and |3〉 is an illegal VB di-
agram.

Fig. 2. VB diagram for spin-1/2 objects with total spin 1/2
(|1〉) and total spin 1 (|2〉). Their bit representations (0
and 1) and the unique integer Ik representing them are
shown. P and P ′ are the phantom sites. |3〉 is a singlet
VB diagram corresponding to two spin-1, a spin-5/2, and
a spin-3/2 object.

“legal” diagrams) with no crossing lines forms a complete and linearly independent
set of states [6].

The Rumer–Pauling rules can be easily extended to construct complete and lin-
early independent basis sets in higher-spin Hilbert spaces involving spin-1/2 objects.
This is done most easily with the help of phantom sites. If we wish to construct VB
diagrams for total spin S subspace involving n spin-1/2 objects we introduce 2S ad-
ditional sites to be called phantom sites. Besides imposing the Rumer–Pauling rules
on the diagrams with n + 2S sites, we impose the additional constraint that there
should be no singlet lines amongst the 2S phantom sites. In Fig. 2 we show a few
examples of VB diagrams with higher total spin.

It is also quite simple to extend the VB rules to spin clusters made up of different
site spins [7]. If the spin at a site is si , then we replace this site by a set of 2si sites,
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each with spin-1/2. We then proceed with constructing the VB basis, as though the
system is made up entirely of spin-1/2 objects, with one difference – we impose the
additional constraint that there should be no singlet lines within the subset of 2si
sites which replace the spin si at site i . The VB diagrams with total spin S > 1/2
are constructed as before with the help of phantom sites. An example of a legal VB
diagram involving higher site spins is shown in Fig. 2.

Generating and storing the VB diagrams on a computer is also quite simple. We
associate one bit with every site. The state of the bit is “1” if, in the VB diagram, a
line begins at the site; the state is “0” if a line ends at the site. Thus, we can asso-
ciate an integer of n bits with every VB diagram involving n spin-1/2 objects. This
association is unique if we decipher the bit pattern of the integer corresponding
to the diagram from inside-out, much like expanding an algebraic expression with
multiple parentheses. In Fig. 2 we have also shown the bit pattern and the associ-
ated integer for each VB diagram. The VB diagrams are generated on a computer
by checking the bit pattern in all n-bit integers to see if they satisfy the criterion
for representing the desired VB diagram. This also enables us to generate the VB
diagrams as an ordered sequence of the integers that represent them, a fact that
helps in rapid generation of the Hamiltonian matrix.

The Hamiltonian matrix in the VB basis can be easily constructed by knowing
the action of the operator Ŝi ·Ŝ j for spin-1/2 particles (i) on a singlet line joining sites
i and j and (ii) on the pair of sites i and j singlet paired to two different sites i ′ and
j ′ (Fig. 3). For Hilbert spaces with non-zero total S, the Hamiltonian involves spin
exchange between the real sites only. These exchange operators could, however,
lead to VB diagrams in which the phantom sites are interconnected. In this event,
simply neglecting these resultant states is sufficient to ensure we are dealing exactly
with the spin S Hilbert space. The Hamiltonian for spin clusters with arbitrary spins
can be treated as consisting of operators with only spin-1/2 objects. This is done by
replacing the spin-exchange operator between sites i and j , Ŝi · Ŝ j , by the operator(∑2si

k=1 τ̂k

)
·
(∑2s j

l=1 τ̂l

)
, where the operators τ̂k and τ̂l are the usual spin-1/2 operators.

The matrix representing the Hamiltonian in the VB basis is, in general, non-
symmetric, because the VB basis is non-orthogonal. The matrix itself is sparse, how-
ever. There are efficient numerical algorithms [8] for obtaining the low-lying eigen-
states of sparse non-symmetric matrixes, and it is possible to solve a non-symmetric
matrix eigenvalue problem for a million by million matrix with approximately 100
million non-zero matrix elements on a powerful PC-based workstation.

Fig. 3. Effect of operation by the operator (Ŝi ·Ŝ j −1/4) on a state with a singlet line between
sites i and j and on a state with sites i and j singlet paired with two different sites i ′ and
j ′.
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Although VB theory guarantees spin purity in the computed eigenstates of the
spin-conserving Hamiltonians, it has several drawbacks. Computation of quantities
such as spin–spin correlation functions and spin densities is not easy, because a site-
spin operator operating on a VB diagram spoils the spin purity of the diagram. This
could be overcome by converting the eigenstate of the Hamiltonian in the VB basis
to the constant MS basis. Another difficulty with the VB procedure is exploiting the
spatial symmetries of the problem. Operation by a spatial symmetry operator on
a legal VB diagram could lead to illegal VB diagrams. Disentangling these illegal
diagrams into legal diagrams can be computationally prohibitive [9].

In more general spin problems, it is often advantageous to use the constant MS ba-
sis and exploit all the spatial symmetries. Partial spin symmetry adaptation in these
cases is also possible by using the spin-parity operator. The effect of the spin-parity
operator on a basis state is to flip all the spins in the state. In the MS = 0 sector, it
is possible to factor the Hilbert space into odd and even parity Hilbert spaces. The
odd (even) parity Hilbert space is spanned by basis vectors with odd (even) total
spin. This also has the effect of reducing the dimensionality of the Hilbert space
and providing partial spin symmetry adaptation. It is rather simple to set up the
Hamiltonian matrix in the symmetry-adapted basis. The Hamiltonian matrix is sym-
metric and usually very sparse. The lowest few eigenstates can be easily computed
by employing the Davidson algorithm. Given these eigenstates, the computation of
properties can proceed by converting an eigenstate in the symmetrized basis into
that in the unsymmetrized basis. The orthogonality of the basis states and the simple
rules involved in obtaining the resultant when a basis state is operated upon by any
type of spin operator in any combination affords easy computation of a variety of
properties of a magnetic system.

The exact diagonalization techniques discussed above are, in general, applicable
to systems whose Hilbert space dimensionality is approximately 10 million. The ma-
jor problem with exact diagonalization methods is the exponential increase in the
dimensionality of the Hilbert space with increasing system size. Thus, the study of
larger systems becomes not only CPU-intensive but also memory-intensive as the
number of non-zero elements of the matrix increases rapidly with system size. With
increasing computer power, slightly larger problems have been solved every few
years. To illustrate this trend, we consider the spin-1 Heisenberg chain. In 1973, ten
years before the Haldane conjecture, De Neef [10] used the exact diagonalization
procedure to solve an eight-site spin-1/2 chain. In 1977 Blote [11] diagonalized the
Hamiltonian of a chain of ten sites. In 1982 Botet and Jullien [12] increased this to
twelve sites. In 1984 Parkinson and Bonner [13] solved the 14-site spin-1 problem
and in the same year Moreo [14] solved the sixteen-site spin-1 chain. In 1990 Taka-
hashi [15] pushed this up to eighteen sites and in 1994 Golinelli et al. [16] produced
a solution for the low-lying states of a twenty-two-site spin-1 chain. The growth in
chain length of the longest spin-1 chain solved is almost linear with time, increas-
ing by approximately two sites every three years. Just to remind ourselves, the Fock
space dimensionality in this case increases as 3N with chain length N . The size of the
matrix also increases similarly and the CPU and storage scales quadratically with the
size of the matrix, if we are targeting only a few eigenstates. For this reason, for sys-
tems which span much larger spaces, the focus has shifted to approximate techniques.
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4.3 Applications to Spin Clusters

Some of the magnetic clusters that have been studied extensively in recent years
are the Mn12 [17], Fe8 [18], and V15 [19] clusters. These clusters are characterized
by many interesting phenomena, e. g. quantum resonant tunneling and quantum
interference [20]. Fundamental to a proper understanding of these phenomena is
a knowledge of the low-energy excitation spectrum in these systems. The meth-
ods discussed under exact diagonalization schemes enable us to calculate the low-
energy excitation spectrum, given a set of exchange constants. The exchange con-
stants themselves are not known with any certainty, however. It is, therefore, all
the more important to be able to perform exact diagonalization studies of low-lying
states to infer the possible sign and magnitude of the exchange constants [7].

The geometry and exchange parameters for the Mn12 cluster are shown in Fig. 4.
The crystal structure suggests that the exchange constant J1 is largest and anti-
ferromagnetic in nature [21]. On the basis of magnetic measurements it has been
suggested that J1 has a magnitude of 215 K. The magnitude and sign of the other
exchange constants are based on comparisons with manganese systems in smaller
clusters. It has been suggested that the exchange constant J2 and J3 are antiferro-
magnetic and have a magnitude of approximately 85 K. For the exchange constant
J4, however, there is no concrete estimate, either of the sign or of the magnitude. In
an earlier study the MnIII–MnIV pair with the strongest antiferromagnetic exchange
constant was replaced by a composite spin-1/2 object [22] and the exchange Hamil-
tonian of the cluster solved for three different sets of parameters. It was found that
the ordering of the energy levels was very sensitive to the relative strengths of the
exchange constants. In these studies, J4 was set to zero and the low-lying excited
states were computed. Only states with spin S up to ten could be obtained because
of the replacement of the higher-spin ion pairs by the compositespin-1/2 objects.

Fig. 4. Schematic diagram of the exchange interac-
tions between the Mn ions in the Mn12Ac molecule.
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The technique described earlier, however, enables exact computation of the low-
lying states of Mn12. The results of the exact calculations are presented in Table 1. We
note that none of the three sets of parameters studied using an effective Hamiltonian
gives the correct ground and excited states when an exact calculation is performed.
It seems that setting the exchange constant J4 to zero cannot yield an S = 10 ground
state (Table 1, Cases A, B, and C). When J3 is equal to or slightly larger than J2
(Table 1, Cases A and B), we find a singlet ground state, unlike the result of the
effective Hamiltonian in which the ground state has S = 8 and S = 0 respectively.
The ground state has spin S = 6 when J3 is slightly smaller than J2 (Table 1, Case
C). In all these cases the first few low-lying states are found to lie within 20 K of
the ground state.

When we use the parameters suggested by Chudnovsky [17] (Table 1, case D),
we obtain an S = 10 ground state separated from an S = 9 first excited state by
223 K. This is followed by another S = 9 excited state at 421 K. Only when the
exchange constant J4 is sufficiently strongly ferromagnetic (Table 1, case E) do we
find an S = 10 ground state with an S = 9 excited state separated from it by a gap
of 35 K, which is close to the experimental value [23]. The second higher excited
state has S = 8, and is separated from the ground state by 62 K.

In Fig. 5 we show the spin density [24] for the Mn12 cluster in the ground state
for the S = 10, MS = 10 state. Although the manganese ions connected by the
strong antiferromagnetic exchange have opposite spin densities, it is worth noting
that the total spin density on these two ions is 0.69, very different from the value
of 0.5 expected if these ions were indeed to form a spin-1/2 object.

The Fe8 cluster is shown in Fig. 6. Each of the Fe ions has a spin of 2 and the ground
state of the system has a total spin S = 10, with the S = 9 excited state separated
from it by approximately 20 K. All the exchange interactions in this system are
expected to be antiferromagnetic. Although the structure of the complex dictates
that the exchange interaction J2 along the back of the butterfly should be small
in comparison with the interaction J1 across the wing [25]. It has previously been

Fig. 5. Spin densities in the ground state
(S = 10, M S = 10) of Mn12Ac for parameter
values J1 = 215 K, J2 = 85 K, J3 = 85 K, and
J4 = −64.5 K.
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Fig. 6. Schematic diagram of the exchange interactions
between the Fe ions in the Fe8 molecule.

Table 2. Energies of a few low lying states in Fe8. The exchange constants corresponding
to the different cases are: Case 1. J1 = 150 K, J2 = 25 K, J3 = 30 K, J4 = 50 K; Case
2. J1 = 180 K, J2 = 153 K, J3 = 22.5 K , J4 = 52.5 K; Case 3. J1 = 195 K, J2 = 30 K,
J3 = 52.5 K, J4 = 22.5 K. All energies are in K.

Case 1 Case 2 Case 3
S E (K) S E (K) S E (K)

10 0.0 10 0.0 10 0.0
9 13.1 9 3.4 9 39.6
8 27.3 8 10.2 9 54.2
9 41.7 7 20.1 9 62.4

reported that such a choice of interaction parameters would not provide an S = 10
ground state [26].

Results from exact calculation of the eigenstates of the Fe8 cluster using three
sets of parameters is shown in Table 2. In two of these cases J2 is very much smaller
than J1. We find that in all these cases, the ground state has spin S = 10 and the
lowest excited state has spin S = 9. One of the main differences among the three
sets of parameters is in the energy gap to the lowest excited state (Table 2). For the
set of parameters used in the earlier study, this gap is the lowest at 3.4 K. For the
parameter sets 1 and 3 [27] this gap is, respectively, 13.1 K and 39.6 K. Whereas in
cases 1 and 2 the second excited state is an S = 8 state, in case 3 this state also has
spin 9.

The spin densities in all the three cases for the ground state are shown in Fig. 7.
The spin densities are always positive at the corners. In cases 1 and 2, the spin density
on the Fe ion on the backbone is positive and negative on the remaining two Fe
sites [28]. In case 3, however, the negative and positive spin density sites for Fe
ions in the middle of the edges are interchanged. This is, perhaps, because in cases
1 and 2 the exchange constant J3 is less than J4 whereas in case 3 the opposite is
true. Thus a spin-density measurement can provide relative strengths of these two
exchange constants. In all three case the difference between the spin densities in
the ground and excited states is that the decrease in the spin density in the excited
state is mainly confined to the corner Fe sites.



4.4 Field Theoretic Studies of Spin Chains 129

Fig. 7. Spin density in the ground state (S = 10, MS = 10) of Fe8 for three different parameter
values: (a) J1 = 150 K, J2 = 25 K, J3 = 30 K, J4 = 50 K; (b) J1 = 180 K, J2 = 153 K,
J3 = 22.5 K, J4 = 52.5 K; (c) J1 = 195 K, J2 = 30 K, J3 = 52.5 K, J4 = 22.5 K.

4.4 Field Theoretic Studies of Spin Chains

One-dimensional and quasi-one-dimensional quantum spin systems have been stud-
ied extensively in recent years for several reasons. Many such systems have been
realized experimentally, and a variety of theoretical techniques, both analytical and
numerical, is available to study the relevant models. Because of large quantum fluc-
tuations in low dimensions, such systems often have unusual properties such as a
gap between the ground state and the excited states. The most famous example of
this is the Haldane gap which was predicted theoretically in integer spin Heisenberg
antiferromagnetic chains [29], and then observed experimentally in a spin-1 system
Ni(C2H8N2)2NO2(ClO4) [30]. Other examples include the spin ladder systems in
which a small number of one-dimensional spin-1/2 chains interact among each other
[31]. It has been observed that if the number of chains is even, i. e. if each rung of
the ladder (which is the unit cell for the system) contains an even number of spin-
1/2 sites the system effectively behaves like an integer spin chain with a gap in the
low-energy spectrum. Some two-chain ladders which have a gap are (VO)2P2O7
[32], SrCu2O3 [33], and Cu2(C5H12N2)2Cl4 [34]. Conversely, a three-chain ladder
which effectively behaves like a half-odd-integer spin chain and does not have a gap
is Sr2Cu3O5 [33]. A related observation is that the quasi-one-dimensional system
CuGeO3 spontaneously dimerizes below a spin-Peierls transition temperature [35];
the unit cell then contains two spin-1/2 sites and the system is gapped.

The results for the gaps discussed above are all in the absence of an external
magnetic field. The situation becomes more interesting in the presence of a magnetic
field [36]. It is then possible for an integer spin chain to be gapless and a half-odd-
integer spin chain to have a gap above the ground state for appropriate values of
the field [37–45]. This has been demonstrated in several models by use of a variety
of methods such as exact diagonalization of small systems and bosonization [46,
47]. It has, in particular, been shown that the magnetization of the system can have
plateaus at certain non-zero values for some finite ranges of the magnetic field.
Further, for a Hamiltonian which is invariant under translation by one unit cell,
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the value of the magnetization per unit cell is quantized to be a rational number
at each plateau [37]. In Section 4.8, we will study the magnetization plateau which
can occur in a three-chain ladder.

In the next two subsections we will discuss some field theoretic methods which can
be used for studying spin chains and ladders. These methods rely on the idea that the
low-energy and long-wavelength modes of a system (i. e. wavelengths much longer
than the lattice spacing, a, if the system is defined on a lattice at the microscopic
level) can often be described by a continuum field theory.

4.4.1 Nonlinear Û-model

The nonlinear σ -model (NLSM) analysis of antiferromagnetic spin chains with the
inclusion of J2 (next-nearest neighbor coupling) and δ (dimerization) proceeds as
follows [48]. The Hamiltonian for the frustrated and dimerized spin chain can be
written as:

Ĥ = J1

∑
i

[
1 − (−1)iδ

]
Ŝi · Ŝi+1 + J2

∑
i

Ŝi · Ŝi+2 (4)

The interactions are shown schematically in Fig. 8. The region of interest is defined
by J2 ≥ 0 and 0 ≤ δ ≤ 1. We first do a classical analysis in the S → ∞ to find the
ground state configuration of the spins. Let us make the general ansatz that the
ground state is a coplanar configuration of spins with the energy per spin being
equal to:

e0 = S2
[

J1

2
(1 + δ) cos θ1 + J1

2
(1 − δ) cos θ2 + J2 cos(θ1 + θ2)

]
(5)

where θ1 is the angle between the spins S2i and S2i+1 and θ2 is the angle between
the spins S2i and S2i−1.

Minimization of the classical energy with respect to θi yields the following three
phases:

• Néel phase: This phase has θ1 = θ2 = π ; hence all the spins point along the
same line and they go . . . ↑↓↑↓ . . . along the chain. This phase is stable for
1 − δ2 > 4J2/J1

Fig. 8. Schematic picture of the frustrated and dimerized spin chain.
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• Spiral phase: Here, the angles θ1 and θ2 are given by:

cos θ1 = − 1
1 + δ

[
1 − δ2

4J2/J1
+ δ

1 + δ2

4J2

J1

]

and

cos θ2 = − 1
1 − δ

[
1 − δ2

4J2/J1
+ δ

1 − δ2

4J2

J1

]
(6)

where π/2 < θ1 < π and 0 < θ2 < θ1. Thus the spins lie on a plane. This phase
is stable for (1 − δ2) < 4J2/J1 < (1 − δ2)/δ.

• Colinear phase: This phase (which needs both dimerization and frustration) is
defined as having θ1 = π and θ2 = 0; hence all the spins again point along the
same line and they go . . . ↑↓↑↓ . . . along the chain. This phase is stable for
(1 − δ2)/δ < 4J2/J1.

These phases and their boundaries are depicted in Fig. 9. Thus even in the classical
limit S → ∞, the system has a rich ground state “phase diagram” [49].

We can now go to the next order in 1/S, and study the spin wave spectrum about
the ground state in each of the phases. The main results are: In the Néel phase, we
find two zero modes, i. e. modes for which the energy ωk vanishes linearly at certain
values of the momentum, k, with the slope dωk/dk at those points (the velocity) being
the same for the two modes. In the spiral phase we have three zero modes, two with
the same velocity describing out-of-plane fluctuations and one with a higher velocity
describing in-plane fluctuations. In the colinear phase we get two zero modes with

Fig. 9. Classical phase diagram of the spin chain in the J2 − δ plane.
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equal velocities just as in the Néel phase. The three phases also differ in the behavior
of the spin–spin correlation function S(q) = ∑

n

〈
S0 · Sn

〉
exp(−iqn) in the classical

limit. S(q) is peaked at q = (θ1+θ2)/2, i. e. at q = π in the Néel phase, at π/2 < q < π

in the spiral phase, and at q = π/2 in the colinear phase.
To study the interactions between the spin waves it is convenient to derive a semi-

classical NLSM field theory which can describe the low-energy and long-wavelength
excitations. The field theory in the Néel phase is given by an O(3) NLSM with a
topological term [29, 47]. The field variable is a unit vector with the Lagrangian
density:

L = 1
2cg2

�̇φ2 − c

2g2
�φ′2 + θ

4π
�φ · �φ′ × �̇φ, (7)

where c = 2S(1−4J2 −δ2)1/2 is the spin wave velocity, g2 = 2/[S(1−4J2 −δ2)1/2] is
the coupling constant (which describes the strength of the interactions between the
spin waves), and θ = 2π S(1−δ) is the coefficient of the topological term (the integral
of this term is an integer which defines the winding number of a field configuration
�φ(x, t)). Note that θ is independent of J2 in the NLSM. (Time and space derivatives
are denoted by a dot and a prime, respectively). For θ(mod2π) = π and g2 less than
a critical value it is known that the system is gapless [47, 50]. For any other value
of θ , the system is gapped. For J2 = δ = 0 one therefore expects that integer spin
chains should have a gap whereas half-odd-integer spin chains should be gapless.
This is known to be true even for small values of S like 1/2 (analytically) and 1
(numerically) although the field theory is derived for large S only. In the presence
of dimerization one expects a gapless system at certain special values of δ. For S = 1,
the special value is predicted to be θc = 0.5. We see that the existence of a gapless
point is correctly predicted by the NLSM. As we will see later, however, according
to reliable numerical results from DMRG δc is 0.25 for J2 = 0 [51] and decreases
with J2 as shown in Fig. 10. These deviations from field theory are probably because
of higher-order corrections in 1/S which have not yet been studied analytically.

In the spiral phase it is necessary to use a different NLSM which is known for
δ = 0 [52, 53]. The field variable is now an SO(3) matrix R. The Lagrangian density
is:

L = 1
2cg2 Tr(ṘT ṘP0) − c

2g2 Tr(R′T R′P1), (8)

where c = S(1 + y)
√

1 − y2, g2 = 2
√

(1 + y)/1 − y/S with 1/y = 4J2, and P0 and
P1 are diagonal matrixes with diagonal elements (1, 1, 2y(1 − y)/(2y2 − 2y + 1))

and (1, 1, 0), respectively. Note that there is no topological term. Hence there is no
apparent difference between integer and half-odd-integer spin chains in the spiral
phase. A one-loop renormalization group [52] and large N analysis [53] indicate
that the system should have a gap for all values of J2 and S, and that there is no
reason for a particularly small gap at any special value of J2.

Finally, in the colinear phase, the NLSM is known for δ = 1, i. e. for the
spin ladder. The Lagrangian is the same as in Eq. (7), with c = 4S

√
J2(J2 + 1),
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Fig. 10. “Phase” diagram for the
spin-1 chain in the J2 − δ plane.

g2 = √
1 + 1/J2/S, and θ = 0. There is no topological term for any value of S, and

the model is therefore gapped [54].
The field theories for general δ in both the spiral and colinear phases are still not

known. Although the results are qualitatively expected to be similar to the δ = 0
case in the spiral phase and the δ = 1 case in the colinear phase, quantitative features
such as the dependence of the gap on the coupling strengths will require the explicit
form of the field theory.

4.4.2 Bosonization

Another field theoretic method for studying spin systems in one dimension is
the technique of bosonization [46, 47, 55–57]. This technique consists of mapping
bosonic operators into fermionic ones, and then using whichever set of operators
is easier to compute with. For instance, consider a model with a single species of
fermion with a linear dispersion relation E(k) = ±υk , where the ± denotes the
right- and left-moving fermions, respectively (with the corresponding fields being
denoted by ψ̂R and ψ̂L), and υ denotes the velocity. Similarly, consider a model with
a single species of boson with the dispersion relationship E(k) = υ|k|; the right- and
left-moving fields are denoted by ψ̂R and ψ̂L respectively. Then it can be shown that
these operators are related to each other as:

ψ̂R ≈ 1√
2πα

e−i2
√

πφ̂R and ψ̂L ≈ 1√
2πα

e+i2
√

πφ̂L (9)

The length parameter α is a cut-off which is required to ensure that the contri-
bution from high-momentum modes do not produce divergences when computing
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correlation functions. It is convenient to define the two bosonic fields:

φ̂ = φ̂R + φ̂L and θ̂ = −φ̂R + φ̂L (10)

Then the fermionic density is given by:

ρ̂ − ρ0 = ψ̂+
R ψ̂R + ψ̂+

L ψ̂L = − 1√
π

∂φ̂

∂x
(11)

where ρ0 is the background density; fluctuations around this density are described
by the quantum fields ψ̂ or φ̂.

Although the dispersion relationship is generally not linear for all the modes of
a given system, it often happens that the low-energy and long-wavelength modes
can be studied using bosonization. For a fermionic system in one dimension these
modes are usually the ones lying close to the two Fermi points with momenta ±kF,
respectively. One can define right- and left-moving fields ψ̂R and ψ̂L which vary
slowly on the scale length a:

ψ̂(x) = ψ̂R(x) eikFx + ψ̂L(x) e−ikFx (12)

Quantities such as the density will generally contain terms which vary slowly as
well as terms varying rapidly on the scale of a:

ρ̂ − ρ0 = ψ̂+ψ̂ = ψ̂+
R ψ̂R + ψ̂+

L ψ̂L + e−i2kFx ψ̂+
R ψ̂L + e+i2kFx ψ̂+

L ψ̂R

= − 1√
π

∂φ̂

∂x
+ 1

2πα

[
ei(2

√
πφ̂−2kFx) + e−i(2

√
πφ̂−2kFx)

]
(13)

One can compute various correlation functions in the bosonic language. Consider
an operator of the form:

Ôm,n = ei2
√

π(mφ̂+nÔ) (14)

we find the following result for the two-point equal-time correlation function at
spatial separations which are much larger than the microscopic lattice spacing, a:

〈0|T Ôm,n(x)Ô+
m′,n′(0)|0〉 ≈ δmm′δnn′

(α

x

)2(m2 K+n2/K )

(15)

where K denotes an interaction parameter which will be described below. Note that
the correlation function decays as a power law. In the language of the renormal-
ization group, the scaling dimension of Ôm,n is given by m2 K + n2/K .

We can now study a quantum spin chain using bosonization. To be specific, let
us consider a spin-1/2 chain described by the anisotropic Hamiltonian:

Ĥ =
N∑

i=1

[
J

2

(
Ŝ+

i Ŝ−
i+1 + Ŝ−

i Ŝ+
i+1

)
+ Jz Ŝz

i Ŝz
i+1 − hŜz

i

]
(16)
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where the interactions are between nearest-neighbor spins only and J > 0. Ŝ+
i =

Ŝx
i +i Ŝ y

i and Ŝ−
i = Ŝx

i −i Ŝ y
i are the spin raising and lowering operators and h denotes

a magnetic field. Note that the model has a U (1) invariance, namely, rotations about
the Sz axis. When Jz = J and h = 0 the U (1) invariance is enhanced to an SU (2)

invariance, because at this point the model can be written simply as Ĥ = J
∑

i Ŝi ·
Ŝi+1. Although the model in Eq. (16) can be solved exactly by use of the Bethe
ansatz, and one has the explicit result that the model is gapless for a certain range
of values of Jz/J and h/J (see Ref. [39]), it is not easy to compute explicit correlation
functions in that approach. We therefore use bosonization to study this model.

We first use the Jordan–Wigner transformation to map the spin model to a model
of spinless fermions. We map a ↑ spin or a ↓ spin at any site to the presence or
absence of a fermion at that site. We introduce a fermion annihilation operator ψi
at each site, and write the spin at the site as:

Ŝz
i = ψ̂+

i ψ̂i − 1/2 = n̂i − 1/2
and

Ŝ−
i = (−1)i ψ̂i eiπ

∑
j n̂ j (17)

where the sum runs from one boundary of the chain up to the (i − 1)th site (we
assume open boundary conditions here for convenience), ni = 0 or 1 is the fermion
occupation number at site i , and the expression for Ŝ+

i is obtained by taking the
Hermitian conjugate of Ŝ−

i . The string factor in the definition of Ŝ−
i is added to

ensure the correct statistics for different sites; the fermion operators at different
sites anticommute, whereas the spin operators commute.

We now find that:

Ĥ =−
∑

i

[
J

2
(ψ̂+

i ψ̂i+1+h.c.)− Jz(n̂i − 1/2)(n̂i+1 − 1/2)+h(n̂i − 1/2)

]
(18)

We see that the spin-flip operators C lead to hopping terms in the fermion Hamil-
tonian, whereas the interaction term leads to an interaction between fermions on
adjacent sites.

Let us first consider the non-interacting case given by Jz = 0. By Fourier trans-
forming the fermions ψ̂k = ∑

j ψ̂ j e−ik ja/
√

N , where a is the lattice spacing and
the momentum, k, lies in the first Brillouin zone −π/a < k < π/a, we find that the
Hamiltonian is given by:

Ĥ =
∑

k

ωkψ̂
+
k ψ̂k (19)

where

ωk = −J cos(ka) − h (20)

The non-interacting ground state is the one in which all the single-particle states
with ωk < 0 are occupied and all the states with ωk > 0 are empty. If we set the
magnetic field h = 0 the magnetization per site m ≡ ∑

i Sz
i /N will be zero in the
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ground state; equivalently, in the fermionic language, the ground state is precisely
half-filled. Thus, for m = 0, the Fermi points (ωk = 0) lie at ka = ±π/2 kFa. Let
us now add the magnetic field term. In the fermionic language, this is equivalent
to adding a chemical potential term (which couples to n̂i or Ŝz

i ). In that case, the
ground state no longer has m = 0 and the fermion model is no longer half-filled.

The Fermi points are then given by ±kF, where:

kFa = π(m + 1/2) (21)

It turns out that this relationship between kF (which governs the oscillations in
the correlation functions as discussed below) and the magnetization m continues to
hold even if we turn on the interaction Jz , although now the simple picture of the
ground state (with states filled below some energy and empty above some energy)
is no longer valid.

In the linearized approximation, the modes near the two Fermi points have the
velocities (∂ωk/∂k = ±υ, where υ is some function of J , Jz , and h. Next, we in-
troduce the slowly varying fermionic fields ψ̂R and ψ̂L as indicated above; these
are functions of a coordinate, x , which must be an integer multiple of a. Finally, we
bosonize these fields. The spin fields can be written in terms of either the fermionic
or the bosonic fields. For instance, Ŝz is given by the fermion density as in Eq. (17)
which then has a bosonized form given in Eq. (13). Similarly:

Ŝ+(x) = (−1)x/a
[
e+ikFx/aψ̂+

R (x) + e−ikFx/aψ̂+
L (x)

]
×

[
e−iπ

∫ x
−∞ dx(ψ̂+(x ′)ψ̂(x ′)+1/2a) + h.c.

]
(22)

where (−1)x/a = ±1, because x/a is an integer. This can now be written entirely in
the bosonic language. the term in the exponential is given by:∫ x

−∞
dx ′ψ̂+(x ′)ψ̂(x ′) = − 1√

π

∫ x

−∞
dx ′ ∂ψ̂

∂x ′ = − 1√
π

[
φ̂R(x) + φ̂L(x)

]
(23)

where we have ignored the contribution from the lower limit at x = −∞.
We can now use these bosonic expressions to compute the two-spin, equal-time

correlation functions Gab(x) ≡ 〈0|T Ŝa(x)Ŝb(0)|0〉. We find that:

Gzz(x) = m2 + c1

x2 + c2
cos(2kFx)

x2K

and

G+−(x) + G−+(x) = c3
(−1)x/a

x1/2K
+ c4

(−1)x/a cos(2kFx)

x2K+1/2K
(24)

where c1 . . . c4 are constants. K and υ are functions of Jz/J and h/J ; the exact
dependence can be found elsewhere [39]. For h = 0, K is given by the analytical
expression:

1
K

= 1 + 2
π

sin−1
(

Jz

J

)
(25)
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Note that at the SU (2) invariant point Jz = J and h = 0, we have K = 1/2, and
the two correlations Gzz and G+− have the same forms.

In addition to providing a convenient way of computing correlation functions,
bosonization also enables us to study the effects of small perturbations. For instance,
a physically important perturbation is the dimerizing term:

V = δ
∑

i

(−1)i
[

J

2

(
Ŝ+

i Ŝ−
i+1 + Ŝ−

i Ŝ+
i+1

)
+ Jz Ŝz

i Ŝz
i+1

]
(26)

where δ is the strength of the perturbation. On bosonizing we find that the scaling
dimension of this term is K . Hence it is relevant if K < 2; it then produces an energy
gap in the system which scales with δ as:

�E ∼ δ1/(2−K ) (27)

This kind of phenomenon occurs in spin-Peierls systems such as CuGeO3; below
a transition temperature Tsp they go into a dimerized phase which has a gap [58].

4.5 Density Matrix Renormalization Group Method

One method which held promise for overcoming the difficulty of exploding dimen-
sionalities is the renormalization group (RG) technique in which one systematically
eliminates the degrees of freedom of a many-body system. Although this technique
found dramatic success in the Kondo problem [59], its straightforward extension to
interacting lattice models was quite inaccurate [60].

In early 1992 the key problems associated with the failure of the old RG method
were identified and a different renormalization procedure based on the eigenval-
ues of the many-body density matrix of proper subsystems was developed [61, 62].
This method has come to be known as the density matrix renormalization group
(DMRG) method and has found dramatic success in solving quasi-one-dimensional
many-body Hamiltonians.

In a real-space RG approach, one begins by subdividing the total system into
several blocks An and proceeds to build effective blocks iteratively so that at each
iteration each effective block represents two or more blocks of the previous itera-
tion, without increasing the Fock space dimensionality of the blocks from that which
existed at the previous iteration. Usually, one starts with each An consisting of a
single site. Because the Hilbert space grows exponentially with increasing system
size, one truncates the number of states kept at each iteration.

The main reason for the failure of the old RG methods is the choice of the states
retained at each stage of the iteration [61]. White [62], recognized that the weak-
ness of the old RG procedure was in the truncation of the Fock space of a block
on the basis of the eigenvalues of the block Hamiltonian being re-normalized. He
replaced this choice by introducing a truncation scheme completely different from
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that was used in the old quantum RG procedures. The choice is the eigenvalues of
the reduced density matrix of the block constructed from the desired state of the
full Hamiltonian. The truncated Fock space is now spanned by the m eigenvectors
of the reduced density matrix of order l × l (m ≤ 1) corresponding to the m highest
eigenvalues of the reduced many-body density matrix. The reason for choosing the
eigenvalues of the reduced density matrix as a criterion for implementing a cut-
off is that, the larger the density matrix eigenvalue, the larger is the weight of the
eigenstate of the density matrix in the expectation value of any property of the
system. This result becomes evident when all the dynamic operators are expressed
as matrixes on the basis of the eigenvectors of the density matrix. The expectation
value of any operator Â is simply:

〈 Â〉 =
∑

i

Aiiρi

/ ∑
i

ρi (28)

where ρi is the density matrix eigenvalue. The larger the value of a particular ρi ,
the larger is its contribution to the expectation value, for a physically reasonable
spread in the diagonal matrix elements Aii .

The many-body density matrix of a part of the system can be easily constructed
as follows. Let us begin with given state |ψ〉S of S, which is called the universe or
superblock, consisting of the system (which we call a block) A and its environment
A′. Let us assume that the Fock space of A and A′ are known, and can be labeled
|i〉A and | j〉A′ , respectively. The representation of |ψ〉S in the product basis of i A
and jA′ can be written as:

|ψ〉S =
∑

i j

ψi j |i〉A × | j〉A′ (29)

where we assume the coefficients ψi j to be real, without loss of generality. Then
the reduced many-body density matrix for block A is defined as:

ρkl =
∑

j

ψk jψl j (30)

The eigenvalue ρi of the density matrix ρ gives the probability of finding the
corresponding eigenstate |µi 〉A in the projection of |ψ〉S on block A. It therefore
follows that the eigenvectors with the highest eigenvalues of the density matrix
of A are the optimum or most probable states to be retained while the system is
augmented.

In the early literature on quantum chemistry the eigenvectors corresponding to
large eigenvalues of one-particle density matrixes were employed as the orbital basis
for performing a configuration interaction (CI) calculation. The eigenvectors of the
density matrix were called the “natural” orbitals and it was observed that the CI
procedure converged rapidly when the “natural” orbitals were employed in setting
up the Slater determinants [63].

The DMRG scheme differs from the “natural” orbital scheme in two important
respects:
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• the reduced density matrixes are many-body density matrixes, and
• the size of the system in terms of the number of sites being studied at each iter-

ation is usually augmented by two sites.

The Hamiltonian matrix that one encounters from iteration to iteration, how-
ever, remains roughly of the same order while the matrix elements keep changing
(re-normalized). In this sense the procedure can be called a renormalization pro-
cedure. The coupling constants (the Hamiltonian matrix elements) keep changing
while the system size increases, as in the RG procedure performed within a blocking
technique.

4.5.1 Implementation of the DMRG Method

We now describe the procedure to carry out the computations. One starts the com-
putation with a small size system, 2n, which can be solved exactly, 1 ≤ n ≤ 4,
depending on the degree of freedom at each site. By exact diagonalization, one
gets the desired eigenstate of that system. The density matrixes of the left and right
blocks, each consisting of n sites (in principle it is not necessary to have the same
number of sites for the two blocks, although in practice this is what is most generally
used) are obtained from the desired eigenstate. The density matrixes are diagonal-
ized and at the first iteration usually all the density matrix eigenvectors (DMEV)
are retained. The Hamiltonian matrix of the left and right blocks (denoted A and
A′) obtained in any convenient basis are transformed into the density matrix eigen-
vector basis. So also are the matrixes corresponding to the relevant site operators
in both blocks. Now, the iterative procedure proceeds as follows.

1. Construct a superblock S = A • •A′, consisting of the block A, two additional
sites σ , and σ ′ and the block A′. Thus, at the first iteration, the system S has
n + 1 + 1 + n = 2n + 2 sites.

2. Set up the matrixes for the total Hamiltonian of the superblock S in the direct
product basis of the DMEV of the blocks A and A′ and the Fock space states
of the new sites. Considering that the new sites are spin-S sites with (2S + 1)

Fock states each, the order of the total Hamiltonian matrix will be m2(2S+1)2 ×
m2(2S + 1)2, where m is the dimension of the block DMEV basis.

3. Diagonalize the Hamiltonian of the superblock S = 2n + 2 to find the desired
eigenstate |ψ〉. Using the state |ψ〉, evaluate all the properties of the superblock
of interest.

4. Construct the reduced many-body density matrix, ρ, for the new block A•. If
the system does not have reflection symmetry, construct the density matrix, ρ′,
for the new right block •A′ also.

5. Diagonalize the density matrix, ρ, and if necessary ρ′. Usually, the density ma-
trix is block-diagonal in the z-component of the total spin of the block, and it
becomes computationally efficient to exploit such quantum numbers. Construct
a non-square matrix O, with m columns, each column being an eigenvector of the
density matrix corresponding to one of the m largest eigenvalues. The number
of rows in the matrix O corresponds to the order of the density matrix.
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6. Construct the matrixes corresponding to the Hamiltonian, HA•, of the new left
block A•, and the site spin operators (Ŝz and Ŝ+) of all the necessary sites. The
Ŝ− operators are simply the adjoints of the Ŝ+ operators.

7. Re-normalize all the matrixes corresponding to the block and site operators by
using the RG transformation matrix O, e. g. H̃A• = O HA•O+. The resulting
re-normalized matrixes are of order m × m and the procedure amounts to a
simultaneous change of basis and a truncation.

8. Replace the A by A•. If the system does not have reflection symmetry replace
A′ by Ã′•.

9. Go to step 1.

Use of the block-diagonal nature of the density matrix, besides reducing the CPU
time requirement, also enables one to label the DMEV with the appropriate z-
component of the total spin of the block (Ms,A). The Fock space of the individual
sites that are added at each iteration are eigenstates of the site spin and number
operators. This enables us to target a definite projected spin (Ms) state of the total
system.

We now briefly describe the mathematical notation we have used so far for various
states. A state of A• is given by the tensor product of a state of A with quantum
number q , and an index i , and a state σ , of the additional site. Thus:

|q, i, σ 〉A• = |q, i〉A × |σ 〉 (31)

A state of a superblock S = A • •A′ is given by:

|qA, µ, σ, qA, ν, τ 〉A = |qA, µ, σ 〉A• × |qA, ν, τ 〉•A (32)

The eigenstate of the Hamiltonian of the super-block can be written as:

|ψ〉S =
∑

qA′ ,µ′,τ
ψ

qA,qA′ ,σ,τ
µ,ν |qA, µ, σ, qA′ , ν, τ 〉S (33)

The density matrix for A• then will have a block structure and can be expressed as

ρqA,σ
µ,ν =

∑
qA′ ,µ′,τ

ψ
qA,qA′ ,σ,τ

µ,µ′ ψ
qA,qA′ ,σ,τ

ν,µ′ (34)

This algorithm is called the infinite lattice DMRG algorithm because this procedure
is best suited for the system in the thermodynamic limit, i. e. when the properties
of the system are extrapolated to the infinite system size limit.

4.5.2 Finite Size DMRG Algorithm

If we are interested in accurate properties of the system at a required size it is pos-
sible to improve on the accuracies obtainable from the infinite DMRG procedure.
This involves recognizing that the reduced many-body density matrixes at each iter-
ation correspond to a different system size. For example, when we are performing
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the DMRG procedure to obtain the properties of a system of 2M sites, at an iteration
corresponding to 2p sites (n ≤ p ≤ M), the reduced density matrix we construct
is that of a block of p sites in a system of 2p sites. If, however, our interest is in
the 2M-site system we should employ the density matrix of the block of p sites in
a 2M-site system. It is possible to construct, iteratively, the p-site reduced density
matrix of the 2M-site system. This is achieved by the so called finite-size algorithm
[62]. This method provides highly accurate solutions even when the states of the
full Hamiltonian have inhomogeneous (symmetry breaking) properties.

To obtain the 2M-site result we should perform the infinite lattice algorithm up
to p = (M − 1) sites first storing all operators in each iteration. Now the algorithm
for finite lattices with reflection symmetry (left block = right block), proceeds as
follows.

1. On reaching a system size of 2M sites, obtain the density matrix of the block of
M sites.

2. Use the density matrix of M sites on the left and that of (M −2) sites on the right,
add two new sites as in the infinite DMRG procedure, and obtain the desired
eigenstate of the 2M system.

3. Now obtain the reduced density matrix of the (M+1) sites from the eigenstate of
the previous iteration obtained in the direct product basis of the DMEV of the
M-site, (M −2)-site density matrixes, and the Fock space states of the individual
sites.

4. Go back to step 2, replacing M by (M + 1) and (M − 2) by (M − 3) and iterate
until a single site results on the right and (2M − 3) sites result on the left.

5. Because the system has reflection symmetry, use the density matrix of the
(2M − 3) sites on the right and construct the 2M system as built-up from three
individual sites on the left and (2M − 3) sites on the right. Obtain the desired
eigenstate of the 2M system in this basis.

6. Now obtain the new 2-site density matrix on the left and (2M − 4) site density
matrix on the right. Replace the single-site on the left by two sites and (2M −3)

sites on the right by (2M − 4) sites in step 5.
7. Repeat steps 5 and 6 until (M − 1) sites are obtained both on the left and right.

The properties of the 2M system obtained from the eigenstates at this stage
corresponds to the first iteration of the finite-size algorithm. We can now go back
to step 1 and carry through the steps to obtain properties at later iterations of
the finite-size DMRG algorithm.

In systems without reflection symmetry, the DMEV of the right and left parts
are not identical even if the sizes of the reduced systems are the same. The finite-
DMRG algorithm in this case involves first constructing the density matrixes of the
left part for sizes greater than M and on reaching the density matrix of (2M − 3)

sites, reducing the size of the left-part and increasing that of the right, from one
site to (M − 1). This will result in the refined density matrixes of both the right and
the left blocks of the total system, for block sizes of (M − 1). At this stage, we can
compute all the properties and continue the reverse sweep until the right block is
of size (2M − 3) and the left block is of size 1. The forward sweep that follows will
increase the block size on the left and reduce that on the right. We would have
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completed the second iteration when the two block sizes are equal. The forward
and reverse sweeps can be continued until we reach the desired convergence in the
properties of the whole system.

4.5.3 Calculation of Properties in the DMRG Basis

At the end of each iteration, one can calculate the properties of the targeted state
[64]. The reduced many-body density matrix computed at each iteration can be
used to calculate the static expectation values of any site operator or their products.
Care should be taken to use the density matrixes appropriate to the iteration. The
expectation value of a site property corresponding to the operator Âi can be written:

〈 Âi 〉 = Tr(ρAi ) (35)

where ρ is the density matrix of the block in which the site i is situated and Ai is
the matrix of the re-normalized site operator at site i . For calculating correlation
functions, one can use a similar equation. The correlation function between two site
operators belonging to separate blocks can be written as:

〈 Âi Â j 〉 = Tr(ρAi A j ) (36)

The accuracy of this procedure turns out be very poor, however, if the sites i and
j belong to the same block [62]. The reason is that one feature implicit in the above
procedure is the resolution of identity by expansion in terms of the complete basis.
Unfortunately, the basis in which the site operators are represented is incomplete
and such an expansion is therefore error-prone. To circumvent this difficulty it has
been suggested [62] that one obtains the matrix representation of the products of
the site operators from the first occurrence of the product pair 〈i j〉 and, by re-
normalizing the product operator B̂i j = Âi Â j , at every subsequent iteration until
the end of the RG procedure. Then, the correlation function between Âi and Â j
(where i and j belong to the same block) can be evaluated as:

〈 Âi Â j 〉 = Tr(ρBi j ) (37)

This procedure is usually found to be more accurate.

4.5.4 Remarks on the Applications of DMRG

The DMRG method is currently the most accurate method for large quantum lattice
models in one dimension. It can be applied to interacting bosonic, fermionic, or spin
models and to models which have interactions among them. The overall accuracy
of the DMRG method is exceptionally high for one-dimensional systems with only
nearest neighbor interactions. For a spin-1/2 chain where exact Bethe ansatz ground-
state energy is available the DMRG ground state energy per site in units of the
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exchange constant J is found to be accurate to seven decimal places with a cut-off
m = 100 [62]. The method is found to be almost as accurate for the one-dimensional
Hubbard model, where again the DMRG results are comparable with exact results
obtained from the exact analytical Bethe ansatz solution [65].

Because higher dimensionality is equivalent to longer-range interactions within
one dimension, the model also restricts the range of interactions in one dimension. It
has been noted that the number of DMEV that should be retained in a calculation on
higher dimensional systems, for accuracies comparable with that in one dimension,
scales exponentially with dimensionality. Thus, to obtain accuracy comparable with
that obtained in a chain of L-sites for a cut-off m, in a L × L square lattice, the
number of DMEV that must be retained for the corresponding two-dimensional
lattice is ∼ m2

Extending the range of interactions to next-nearest neighbors does not signifi-
cantly reduce the accuracy [66]. Inclusion of cyclic boundary conditions, however,
reduces the accuracy of the method significantly – although in one-dimension the
DMRG method still would outperform any other method for the same system size.
In the DMRG procedure the most accurate quantity computed is the total energy. In
dealing with other quantities, e. g. correlation functions, caution must be exercised
in interpreting the results.

The density matrix eigenvalues sum to unity and the truncation error, which is
defined as the sum of the density matrix eigenvalues corresponding to the discarded
DMEV, gives a qualitative estimate of the accuracy of the calculation and provides
a framework for extrapolation to the m → ∞ limit. The accuracy of the results
obtained in this way is unprecedented [67, 68]. The accuracy of the ground state
energy per site for the spin-1 chain is limited by the precision of machine arithmetic,
e. g. eo = 1.401484038971(4). Similarly, the accuracy persists even when calculating
for the Haldane gap – e. g. the gap is evaluated to be 0.41050(2).

Another aspect of the DMRG technique worth noting is that the method is best
suited for targeting one eigenstate at a time, although it is possible to obtain rea-
sonable results for a set of states by using an average many-body reduced density
matrix constructed as a weighted sum of the density matrixes corresponding to each
of the states in question. One way of constructing the average density matrix is by
using a statistical weight for the chosen set of states; the averaged density matrix
in this instance is given by:

ρβ;kl =
∑

i j

ψi;k jψi;l j exp[−βεi ]
/ ∑

i

exp[−βεi ] (38)

where β = 1/kBT and kB and T are the Boltzmann constant and temperature,
respectively. One can thus extend the DMRG method to finite temperatures.

Finite size algorithms have been used extensively to study edge states and systems
with impurities, where substantial improvement of the accuracy is needed to charac-
terize the various properties of a finite system. The DMRG method has been applied
to diverse problems in magnetism: study of spin chains with S > 1/2 [69], chains
with dimerization and/or frustration [51, 66, 70, 71], and coupled spin chains [66, 72,
73], to list a few. Highly accurate studies have been performed of the structure factor
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and string-order parameter (topological long-range order) [67] and edge states in
Haldane phase systems [74]. Dynamic properties for both spin and fermionic sys-
tems with DMRG have also been reported within the maximum entropy method
[75] and the continued fraction [76] and correction vector [77] approaches. DMRG
has also been successfully formulated to obtain low-temperature thermodynamic
properties for a variety of spin systems [78, 79], and the solution of models of spin
chains dynamically coupled to dispersionless phonons [80]. Nishino and Okunishi
have also derived two re-formulations of DMRG – the product wave function renor-
malization group (PWFRG) [81], and the corner transfer matrix renormalization
group (CTMRG) [82] methods. These methods are a means of calculating dynamic
correlation functions in spin chains and obtaining highly accurate results for the
two-dimensional Ising model at criticality.

4.6 Frustrated and Dimerized Spin Chains

It is well known that the one-dimensional XY chain can be mapped on to a one-
dimensional non-interacting spinless fermion model. The isotropic spin chain will
then map on to a chain of interacting spinless fermions. According to the Peierls
theorem a partly filled one-dimensional band of non-interacting fermions is unsta-
ble with respect to a lattice distortion that results in an insulating ground state. It has
been shown that introduction of interactions in the Peierls system leads to greater
instability. The mapping between the Heisenberg spin chains with equal nearest-
neighbor exchange interactions (uniform spin chain) and the spinless fermion model
suggests that such a spin chain is also unstable with regard to a lattice distortion
leading to alternately strong and weak nearest-neighbor exchange constants, i. e.
a dimerized spin chain. What is of importance is that such dimerization is uncon-
ditional – no matter how strong the lattice is, the lattice dimerizes, because the
exchange energy gained as a result of dimerization always exceeds the strain en-
ergy. This is because the gain in exchange energy varies as δ2 ln δ whereas the strain
energy loss varies as δ2, where δ is the magnitude of dimerization that leads to the
nearest neighbor exchange constants alternating as J (1 ± δ).

In recent years, many systems which closely approximate the one-dimensional
spin chain have been synthesized. What has been observed in these experimental
systems is that besides the nearest-neighbor antiferromagnetic exchange there is
also a second neighbor exchange J2 of the same sign and comparable magnitude.
Such a second neighbor interaction has the effect of frustrating the spin alignment
favored by the nearest-neighbor interaction. Realistic study of these systems there-
fore requires modeling them using both dimerization and frustration. Theoretically,
spin chains with frustration only (J − J2 model) were studied by Majumdar and
Ghosh. Interestingly, they showed that for J2 = J/2, the ground state is doubly
degenerate and is spanned by the two possible Kekulé structures (Fig. 11). It is
quite gratifying to note that a century after the Kekulé structure for benzene was
proposed there is actually a Hamiltonian for which the Kekulé structure happens
to be the ground state!
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Fig. 11. Doubly degenerate ground states (a) and
(b) of the J − J2 chain (see Fig. 8 for δ = 0) at
J2 = J/2. The solid line between sites i and j
represents a singlet, [| ↑i↓ j 〉 − | ↓i↑ j 〉]/

√
2.

Although most of the discussion above is restricted to spin-1/2 chains, there has
been much interest in the higher-spin chains after the conjecture of Haldane which
predicts that for uniform spin chains the excitation spectrum of integer spin chains
is qualitatively different from that of half-odd-integer spin chains. The latter have a
gapless excitation spectrum whereas the excitation spectrum of the former is gapped.
The synthesis and study of integer spin chains have indeed confirmed this conjecture.

Notwithstanding many interesting exact analytical solutions for spin chains, there
are still many situations for which such solutions have been elusive. The exact solu-
tions are basically confined to the uniform Heisenberg model and the frustrated and
dimerized model along the line 2J2 +δ = 1 in the J2 −δ plane, with J = 1. Reliable
numerical study of these models therefore requires the development of techniques
which are highly accurate so that the results of large finite systems can be scaled or
extrapolated to the thermodynamic limit. As has already been discussed, the DMRG
technique is ideally suited, because of its high accuracy for quasi-one-dimensional
systems.

The Hamiltonian for the frustrated and dimerized spin chain is given in Eq. (4)
and is shown schematically in Fig. 8. A few low-lying states in a sector with a given
value of the total spin component, MS are obtained at representative points in the
J2 − δ plane, using the DMRG method. The ground state is always the first (lowest
energy) state in the MS = 0 sector. The accuracy of the DMRG method depends
crucially on the number of eigenstates of the density matrix, m, which are retained.
Working with m = 100 to 120 over the entire J2 − δ plane gives accurate results.
This can be verified by comparing the DMRG results for these m values with exact
numerical diagonalizations of chains with up to 16 sites for spin-1 systems [83] and
22 sites for spin-1/2 systems [84]. The chain lengths studied vary from 150 sites for
J2 > 0 to 200 sites for J2 = 0. The DMRG results are also tracked as a function of
N , the chain length, to verify that convergence is always reached well before 150
sites. The numerical results are much better convergent for open chains than for
periodic chains, a feature generic to the DMRG technique [62, 68].

The quantum phase diagrams obtained for a spin-1/2 chain is shown in Fig. 12.
The system is gapless on the line A running from J2 = 0 to J2c = 0.241 for δ = 0,
and is gapped everywhere else in the J2 − δ plane. There is a disorder line B given
by 2J2 + δ = 1; the peak in the structure factor S(q) is at qmax = π to the left of B
(region I), decreases from π to π/2 as we go from B up to line C (region II), and
is at qmax = π/2 to the right of C (region Ill). This is in agreement with the results
obtained in Section 4.4 by use of the NLSM approach. The correlation length goes
through a minimum on line B.

In the spin-1 case (Fig. 10), the phase diagram is more complex. There is a solid
line marked A which runs from (0, 0.25) to approximately (0.22±0.02, 0.20±0.02),
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Fig. 12. “Phase” diagram for the
spin-1/2 chain in the J2 − δ plane.

shown by a cross. To within numerical accuracy the gap is zero on this line and the
correlation length ξ is as large as the system size N . The rest of the “phase” dia-
gram is gapped. The gapped portion can, however, be divided into different regions
characterized by other interesting features. On the dotted lines marked B, the gap is
finite. Although ξ goes through a maximum when we cross B in going from region
II to region I or from region III to region IV, its value is much smaller than N . There
is a dashed line C extending from (0.65, 0.05) to about (0.73, 0) on which the gap
seems to be zero (to numerical accuracy), and ξ is very large, but not as large as
N . The straight line D satisfying 2J2 + δ = 1 extends from (0, 1) to approximately
(0.432, 0.136). Regions II and III are separated by line E which goes down to about
(0.39, 0). Across D and E the peak in the structure factor decreases from π (Néel)
in regions I and II to less than π (spiral) in regions III and IV. In regions II and III
the ground state for an open chain has a fourfold degeneracy (consisting of states
with S = 0 and S = 1), whereas it is non-degenerate in regions I and IV with S = 0.
The regions II and III, where the ground state is fourfold degenerate for an open
chain, can be identified with the Haldane phase; the regions I and IV correspond
to a non-Haldane singlet phase. The lines B, D, and E meet in a small region V
where the ground state of the system is numerically very difficult to find. Note that
the numerically zero gap at (0.73, 0) is unexpected from either bosonic mean-field
theory [85] or the NLSM approach discussed earlier.

For the spin-1 system, there is a striking similarity between the ground state
properties of the dimerized and frustrated model (Eq. 4) as a function of J2 (with
δ = 0) and the biquadratic model:

Ĥ =
∑

i

[
Ŝi · Ŝi+1 + β(Ŝi · Ŝi+1)

2
]

(39)
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as a function of (positive) β [70]. For J2 < 0.39 and β < 1/3 both models are in
the Néel phase and are gapped. For J2 > 0.39 and β > 1/3, the two models are
in the spiral phase and are generally gapped, although the model represented by
Eq. (4) is “gapless” for J2 = 0.73 and the model represented by Eq. (39) is gapless
for β = 1. Qualitatively, the cross-over from the Néel to the spiral phase (but not
the gaplessness at a particular value of J2 or β) can be understood by means of the
following classical argument. Let us set the magnitudes of the spins equal to 1 and
define the angle between spins Si and Si+n to be nθ . The angle θ can be obtained by
minimizing cos θ + J2 cos 2θ in Eq. (4), and cos θ + θ cos2 θ in Eq. (39). This gives
us a Néel phase (θ = π) if J2 ≤ 1/4 and β ≤ 1/2 in the two models, and a spiral
phase for larger values of J2 and β with θ = cos−1(−1/4J2) and θ = cos−1(−1/2β),
respectively. The actual crossover points from Néel to spiral are different from these
classical values for spin-1. In the classical limit S → ∞ the ground state of the model
is in the Néel phase for 4J2 < 1− δ2, in a spiral phase for 1− δ2 < 4J2 < (1− δ2)/δ,
and in the colinear phase for (1 − δ2)/δ < 4J2 (Fig. 9).

As is apparent from Fig. 8, δ = 1 results in two coupled spin chains wherein
the inter-chain coupling is 2 and the intrachain coupling is J2. By use of DMRG
one can study the dependence of the gap � and the two-spin correlation function
C(r) on the inter-chain coupling J . In Fig. 13 � is plotted against J for spin-1/2
and spin-1 systems. For spin-1/2 the system is gapped for any non-zero value of
the inter-chain coupling J , although the gap vanishes as J → 0. The gap increases
and correspondingly the correlation length decreases with increasing J . For coupled
spin-1 chains one obtains the somewhat surprising result that both the gap and the
correlation length ξ are fairly large for moderate values of J . Note that the variation

Fig. 13. Gap � vs J for coupled spin chains (δ = 1). Spin-1/2 and spin-1 data are indicated
by crosses and circles, respectively.
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of the gap with J for spin-1 (shown as circles) is much less than that for spin-1/2
(crosses).

The NLSM derived in Section 4.4 can be expected to be accurate only for large
values of the spin S. It is interesting to note that the numerically obtained “phase”
boundary between the Néel and spiral phases for spin-1 is closer to the classical
(S → ∞) boundary 4J2 = 1− δ2 than for spin-1/2. For instance, the crossover from
Néel to spiral occurs, for δ = 0, at J2 = 0.5 for spin-1/2, at 0.39 for spin-1, and at
0.25 classically.

To conclude this section, we have studied a two-parameter “phase” diagram for
the ground state of isotropic antiferromagnetic spin-1/2 and spin-1 chains. The spin-
1 diagram is considerably more complex than the corresponding spin-1/2 chain,
with surprising features like a “gapless” point inside the spiral “phase”; this point
could be close to a critical point discussed earlier in the literature [50, 86]. It would
be interesting to establish this more definitively. Our results show that frustrated
spin chains with small values of S have features not expected from large S field
theories.

4.7 Alternating (S1, S2) Ferrimagnetic Spin Chains

Ferrimagnets belong to a class of magnet with spontaneous magnetization be-
low a certain critical temperature. Several attempts have been made to synthe-
size molecular materials with spontaneous magnetization at low temperatures [87,
88]. These are quasi-one-dimensional bimetallic molecular magnets in which each
unit cell contains two spins with different spin values, with the general formula
ACu(pbaOH)(H2O)3.2H2O, where pbaOH is 2-hydroxyo-1,3-propylenebis(oxa-
mato) and A = Mn, Fe, Co, or Ni; they belong to the alternating or mixed spin
chain family [88, 89]. These alternating spin compounds have been seen to have
ferrimagnetic behavior. It is important that there are many other classes of ferri-
magnetic system – homometallic chains with different Lande factors [90] and topo-
logical ferrimagnets [91, 92], with behavior very similar to that of mixed-spin sys-
tems.

The thermodynamic behavior of these ferrimagnetic spin compounds is very in-
teresting [89, 93]. In very low magnetic fields these systems have one-dimensional
ferrimagnetic behavior. Plots of χT against T (where χ is the magnetic suscep-
tibility and T the temperature) have a rounded minimum – as the temperature
is increased χT decreases sharply and goes through a minimum before increasing
gradually. The temperature at which this minimum occurs differs from system to sys-
tem and depends on the site spins of the chain. The variation of the field-induced
magnetization with temperature is also interesting because the ground state is a
magnetic state. These exciting observations have motivated us to study ferrimag-
netic systems with arbitrary spins s1 and s2 alternating from site to site. It would
also be of interest to know the thermodynamic properties of systems with varying
s1 and s2.
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4.7.1 Ground State and Excitation Spectrum

We start our discussion with the Hamiltonian for a chain with spins s1 and s2 on
alternating sites (with s1 > s2, without loss of generality):

Ĥ = J
∑

n

[
(1 + δ)Ŝ1,n · Ŝ2,n + (1 − δ)Ŝ2,n · Ŝ1,n+1

]
(40)

where the total number of sites is 2N and the sum is over the total number of unit
cells N . Ŝi,n corresponds to the spin operator for the site spin si in the nth unit
cell. The exchange integral J is taken to be positive for all our calculations; δ is the
dimerization parameter and lies in the range {0, 1}.

Before describing our numerical results, we briefly summarize the results of a
spin-wave analysis for the purposes of comparison [79]. We will first state the results
for δ = 0. According to spin-wave theory, the ground state has total spin SG =
N (si − s2). Let us define a function:

ω(k) = J
√

(s1 − s2)2 + 4s1s2 sin2(k/2) (41)

where k denotes the wave number. The ground state energy per site is given by:

ε0 = E0

2N
= −Js1s2 + 1

2

∫ π

0

dk

π
[−J (s1 + s2) + ω(k)] (42)

The lowest branch of excitations is to states with spin S = SG−1, with the dispersion:

ω1(k) = J (−s1 + s2) + ω(k) (43)

the gap vanishes at k = 0. There is a gapped branch of excitations to states with
spin S = SG + 1, with the dispersion:

ω2(k) = J (s1 − s2) + ω(k) (44)

the minimum gap occurs at k = 0 and is given by � = 2J (s1−s2). In the ground state
with Sz = SG the sublattice magnetizations are given by the expectation values:

〈Ŝz
1,n〉 =

(
s1 + 1

2

)
− 1

2

∫ π

0

dk

π

J (s1 + s2)

ω(k)

and

〈Ŝz
2,n〉 = (s1 − s2) − 〈Ŝz

1,n〉 (45)

The various two-spin correlation functions decay exponentially with distance; the
inverse correlation length is given by ξ−1 = ln(s1/s2). The results with dimerization
(δ > 0) are very similar. In fact, within spin-wave theory the minimum gap � to
states with spin S = SG + 1 is independent of δ.
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We now use the powerful DMRG method to study the system defined by Eq. (40)
both with and without dimerization −δ �= 0 and δ = 0 respectively. We have consid-
ered alternating spin-3/2/spin-l (hereafter denoted (3/2, 1)), spin-3/2/spin-1/2 (de-
noted (3/2, 1/2)), and spin-1/spin-1/2 (denoted (1, 1/2)) chains with open boundary
condition for the Hamiltonian given by Eq. (40). We compute the ground-state prop-
erties for these three systems by studying chains with 80 to 100 sites. The number
of dominant density matrix eigenstates, m, that we have retained at each DMRG
iteration also varies between 80 to 100. With increasing Fock space dimensional-
ity of the site spins, we increase m to obtain more accurate results. We follow the
usual steps for the “infinite system” DMRG method discussed above [62, 66, 94],
except that the alternating chains studied here are not symmetric between the left
and right halves; hence the density matrixes for these two halves must be sepa-
rately constructed at every iteration of the calculations. We have also verified the
convergence of our results by varying the values of m and the system size.

The ground states of all the systems lie in the Sz = N (s1 − s2) sector, as veri-
fied from extensive checks performed by obtaining the low-energy eigenstates in
different Sz sectors of a 20-site chain. A state corresponding to the lowest energy
in Sz = N (s1 − s2) is found in all subspaces with |Sz | ≤ N (s1 − s2), and is absent
in subspaces with |Sz | > N (s1 − s2). This shows that the spin in the ground state is
SG = N (s1 − s2). (Actually, the lowest energy states in the different Sz sectors are
found to be degenerate only up to 10−5 J . Such small errors are negligible when
studying thermodynamics at temperatures higher than, say, 10−2 J ) .

In Fig. 14, we show the expectation value of site-spin operator Ŝz
i,n (spin density)

at all the sites for the (3/2, 1), (3/2, 1/2), and (1, 1/2) chains. The spin densities are
uniform on each of the sublattices in the chain for all three systems. For the (3/2, 1)
chain the spin density at a spin-3/2 is 1.14427 (the classical value is 3/2), whereas at
spin-1 site it is −0.64427 (classical value 1). For the (3/2,1/2) chain the spin density
at a spin-3/2 site is 1.35742 and at a spin-1/2 site it is −0.35742. For the (1, 1/2)
chain the value at a spin-1 site is 0.79248 and at a spin-1/2 site it is −0.29248. These
can be compared with the spin-wave values of 1.040 and −0.540; 1.314 and −0.314;
and 0.695 and −0.195 for the spin-s1 and spin-s2 sites of the (3/2, 1), (3/2,1/2), and
(1, 1/2) systems, respectively. We note that the spin-wave analysis overestimates
the quantum fluctuations for systems with small site-spin values. We also notice
that there is a greater quantum fluctuation when the difference between site spins,
|s1 − s2| is larger. This is also seen in spin-wave theory. The spin density distribution
in an alternating (s1, s2) chain is more similar to that of a ferromagnetic chain than to
that of an antiferromagnet, with the net spin of each unit cell perfectly aligned (but
with small quantum fluctuations on the individual sublattices). In a ferromagnetic
ground state, the spin density at each site has the classical value appropriate to
the site spin, whereas for an antiferromagnet this averages out to zero at each site,
because the ground state is non-magnetic. From this standpoint the ferrimagnet
is similar to a ferromagnet and is quite unlike an antiferromagnet. The spin-wave
analysis also yields the same physical picture.

Because of the alternation of spin-s1 and spin-s2 sites along the chain, one must
distinguish between three different types of pair correlation, 〈Ŝz

1,0 Ŝz
1,n〉, 〈Ŝz

2,0 Ŝz
2,n〉

and 〈Ŝz
1,0 Ŝz

2,n〉. We calculate all the three correlation functions with the mean val-



4.7 Alternating (S1, S2) Ferrimagnetic Spin Chains 151

Fig. 14. Expectation values of the z-components of the two spins vs the unit cell index, n,
for an alternating spin chain. The upper and lower points are for the spin-s1 and the spin-s2
sites respectively.

ues removed by subtraction, because the mean values are non-zero in all these three
systems, in contrast with pure antiferromagnetic spin chains. In the DMRG proce-
dure we have computed these correlation functions from the sites inserted at the
last iteration, to minimize numerical errors. In Fig. 15, we plot the two-spin correla-
tion functions in the ground state as a function of the distance between the spins for
an open chain of 100 sites for all three cases. All three correlation functions decay
rapidly with distance for each of the three systems. From the figure it is clear that,
except for the 〈Ŝz

1,0 Ŝz
2,n〉 correlation, the correlations are all almost zero, even for

the shortest possible distances. The 〈Ŝz
1,0 Ŝz

2,n〉 correlation has an appreciable value
[−0.2 for (3/2, 1), −0.07 for (3/2, 1/2), and −0.094 for (1, 1/2)] only for the nearest
neighbors. This rapid decay of the correlation functions makes it difficult to find
the exact correlation length ξ for a lattice model, although it is clear that ξ is very
small (less than one unit cell) for the (3/2, 1/2) and (1, 1/2) cases, and a little larger
(1 < ξ < 2) for the (3/2, 1) system. Spin-wave theory gives ξ = 2.47 for (3/2, 1),
ξ = 0.91 for (3/2, 1/2), and ∼ ξ1.44 for (1, 1/2) cases. (We should remark here
that our ξ is not to be confused with the conventional definition of the correla-
tion length; the latter is actually infinite in these systems, because of the long-range
ferrimagnetic order).
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Fig. 15. Subtracted two-spin correlation functions as a function of distance between the two
spins. (a) spin-s1–spin-s1 correlations, (b) spin-s2–spin-s2 correlations, and (c) spin-s1–spin-s2
correlations. In each figure, squares correspond to (3/2, 1), circles to (3/2, 1/2), and triangles
to (1, 1/2) systems.

The lowest spin excitation of all three chains is to a state with S = SG − 1. To
study this state we target the 2nd state in the Sz = SG − 1 sector of the chain. To
confirm that this state is a S = SG − 1 state we have computed the 2nd state in the
Sz = 0 sector and find that it also has the same energy. The corresponding state is,
however, absent in Sz sectors with |Sz | > SG − 1. Also, from exact diagonalization
of all the states of all the s1 − s2 alternating spin chains with eight sites we find that
the energy ordering of the states is such that the lowest excitation is to a state with
spin S = SG −1. We have obtained the excitation gaps for all three alternating spin
chains in the limit of infinite chain length by extrapolating from the plot of spin
gap against the inverse of the chain length (Fig. 16). We find that this excitation is
gapless in the infinite chain limit for all three cases.

To characterize the lowest spin excitations completely, we also have computed
the energy of the S = SG + 1 state by targeting the lowest state in the Sz = SG +
1 sector. In Fig. 17 we have plotted the excitation gaps to the S = SG + 1 state
from the ground state for all three systems as a function of the inverse of the chain
length. The gap saturates to a finite value of (1.0221±0.0001)J for the (3/2, 1) case,
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Fig. 16. Energy difference (units of J ) between the ground state and the lowest energy state
with spin S = SG − 1 as a function of inverse system size. SG is the total spin of the ground
state.

Fig. 17. Excitation gap (units of J ) from the ground state (spin S = SG) to the state with
spin S = SG + 1, as a function of the inverse system size.
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Fig. 18. Excitation gap (units of J ) to the state with spin S = SG + 1 from the ground state
(S = SG) as a function of δ for the dimerized alternating chain. The exponent is 1.0 ± 0.01
for all three systems.

(1.8558 ± 0.0001)J for (3/2, 1/2), and (1.2795 ± 0.0001)J for (1, 1/2). It seems that
the gap is also higher when the difference in site spins, |s1 − s2|, is larger. The site
spin densities expectation values computed in this state for all three cases are found
to be uniform (i. e. independent of the site) on each of the sublattices. This leads
us to believe that this excitation cannot be characterized as the states of a magnon
confined in a box, as has been observed for a spin-1 chain in the Haldane phase
[67].

We have also studied the spin excitations in the dimerized alternating (s1, s2)
chains, defined in Eq. (40). We calculate the lowest spin excitation to the S = SG −1
state from the ground state. We find that the S = SG − 1 state is gapless from the
ground state for all values of δ. This result agrees with the spin-wave analysis of
the general (s1, s2) chain. The systems remain gapless even while dimerized unlike
the pure antiferromagnetic dimerized spin chains. There is a smooth increase of the
spin excitation gap from the ground state to the S = SG + 1 state with increasing δ

for all three systems studied here. We have plotted this gap against δ in Fig. 18. The
gap has almost linear behavior as a function of δ, with an exponent of 1.0 ± 0.01
for all three systems. This seems to be an interesting feature of all ferrimagnets.
The spin-wave analysis shows, however, that this excitation gap is independent of
δ for the general (s1, s2) chain. The similar behavior of these three alternating spin
systems suggests that a ferrimagnet can be considered as a ferromagnet with small
quantum fluctuations.
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4.7.2 Low-temperature Thermodynamic Properties

We have varied the size of the system from 8 to 20 sites to calculate the thermo-
dynamic properties. We imposed periodic boundary conditions to minimize finite
size effects with Ŝ1,N+1 = Ŝ1,1, so that the number of sites is equal to the number
of bonds. We set up the Hamiltonian matrixes in the DMRG basis for all allowed
Sz sectors for a ring of 2N sites. We can diagonalize these matrixes completely to
obtain all the eigenvalues in each of the Sz sectors. As the number of DMRG basis
states increases rapidly with increasing m, we retain a smaller number of dominant
density matrix eigenvectors in the DMRG procedure, i. e. 50 ≤ m ≤ 65, depending
on the Sz sector and the size of the system. We have checked the dependence of
properties (with m in the range 50 ≤ m ≤ 65) for the system sizes we have studied
(8 ≤ 2N ≤ 20), and have confirmed that the properties do not vary significantly for
the temperatures at which they are computed; this is true for all three systems.

It might appear surprising that the DMRG technique which essentially targets
a single state, usually the lowest energy state in a chosen Sz sector, should provide
accurate thermodynamic properties, because these properties are governed by the
energy level spacings and not by the absolute energy of the ground state. There are,
however, two reasons why the DMRG procedure yields reasonable thermodynamic
properties at low temperatures. First, the projection of the low-lying excited state
eigenfunctions on the DMRG space which contains the ground state is substantial;
hence these excited states are well described in the chosen DMRG space. Second,
the low-lying excitations of the full system are often the lowest energy states in
different sectors in the DMRG procedure; hence their energies are quite accurate
even on an absolute scale.

The canonical partition function Z for the 2N site ring can be written as:

Z =
∑

j

e−β(E j −B(M) j ) (46)

where the sum is over all the DMRG energy levels of the 2N site system in all the
Sz sectors. E j and (M) j denote the energy and the ẑ-component of the total spin
of the state j , and B is the strength of the magnetic field in units of 1/gµB (g is
the gyromagnetic ratio and µB is the Bohr magneton) along the ẑ direction. The
field-induced magnetization 〈M〉 is defined as:

〈M〉 =
∑

j (M) j e−β(E j −B(M) j )

Z
(47)

The magnetic susceptibility χ is related to the fluctuation in magnetization:

χ = β[〈M2〉 − 〈M〉2] (48)

Similarly, the specific heat CV is related to the fluctuation in the energy and can
be written as:

CV

kB
= β2[〈E2〉 − 〈E〉2] (49)
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In the discussion to follow we present results on the 20-site ring, although all
calculations have been performed for system sizes from 8 to 20 sites. This is because
the qualitative behavior of the properties we have studied are similar for all the ring
sizes in this range for all three systems.

The dependence of magnetization on temperature for different magnetic field
strengths is shown in Fig. 19 for all three systems. At low magnetic fields the mag-
netization decreases sharply at low temperatures and has paramagnetic behavior at
high temperatures. As the field strength is increased, the magnetization decreases
more slowly with temperature, and for high field strengths the magnetization has a
broad maximum. This behavior can be understood from the type of spin excitations
present in these systems. The lowest energy excitation at low magnetic fields is to a
state with spin s less than SG, so the magnetization initially decreases at low temper-
atures. As the field strength is increased the gap to spin states with S > SG decreases
as the Zeeman coupling to these states is stronger than to states with S ≤ SG. The
critical field strengths at which the magnetization increases with temperature varies
from system to system, because this corresponds to the lowest spin gap of the cor-
responding system. The behavior of the system at even stronger fields turns out to
be remarkable. The magnetization in the ground state (T = 0) increases abruptly,
signalling that the ground state at this field strength has Sz > SG. The temperature-

Fig. 19. Plot of magnetization per site as a function of temperature, T , for four different
values of the magnetic field B. Squares are for B = 0.1J/gµB, circles for B = 0.5J/gµB,
triangles for B = J/gµB, and diamonds for B = 2J/gµB.
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dependence of the magnetization has a broad maximum, indicating the presence
of states with even higher spin values lying above the ground state in the presence
of this strong field. In all three cases, the ground state at very high field strengths
should be ferromagnetic. For the systems at such high fields, the magnetization de-
creases slowly with increasing temperature because no other higher spin states lies
above the ground state. Although we have not studied such high-field behavior, we
find that the field strength corresponding to switching the spin of the ground state
sG to sG + 1 is higher for the (3/2, 1/2) system compared with the (3/2, 1) and (1,
1/2) systems. The switching field seems to depend on the value of |s1 − s2|. We see
in Fig. 19 that for the (3/2, 1) and (1, 1/2) cases the ground state has switched to
the higher spin state at the highest magnetic field strength we have studied but that
in the (3/2, 1/2) case the ground state has not switched even at the field strength,
indicating that the excitation gap for this system is larger than for the other two. For
the (3/2, 1/2) case the same situation should occur at very high magnetic fields. Thus,
we predict that the highest Sz is attained in the ground state at high magnetic field
and that this field strength increases with increasing site-spin difference |s1 − s2|.

The dependence of χT/2N on temperature for different field strengths is shown
in Fig. 20 for all three systems. For zero field the zero temperature value of χT is
infinite in the thermodynamic limit; for finite rings it is finite and equal to the av-

Fig. 20. χT (defined in the text) per site as a function of temperature T for different magnetic
fields B. Zero field results are shown by squares, B = 0.01J/gµB by circles, B = 0.1J/gµB
by triangles, and B = J/gµB by diamonds.
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erage of the square of the magnetization in the ground state. For the ferrimagnetic
ground state χT/2N , as T → 0, is given by SG(SG + 1)/6N . As the temperature
increases this product decreases and passes through a minimum before increasing
again. For the three systems studied here the minimum occurs at different tem-
peratures depending on the system. For the (3/2, 1) alternating-spin system it is
at kBT = (0.8 ± 0.1)J , whereas for the (3/2, 1/2) and (1, 1/2) systems it occurs at
kBT = (1.0 ± 0.1)J and kBT = (0.5 ± 0.1)J , respectively. These results agree well
with previous numerical calculations on small system sizes [95]. The minimum oc-
curs because states with Sz < SG become populated at low temperatures. In the
infinite chain limit, these states turn out to be the gapless excitations of the system.
The subsequent increase in the product χT is because of the higher energy-higher
spin states being accessed with further increase in temperature. This increase is slow
for the (3/2, 1/2) case, because in this system very high spin states are not accessi-
ble within the chosen temperature range. It has been found experimentally in the
bimetallic chain compounds that the temperature at which the minimum occurs in
the χT product depends on the magnitudes of the spins s1 and s2 [93]. The NiI I –
CuI I bimetallic chain has a minimum in χT/2N at a temperature corresponding to
55 cm−1 (80 K); an independent estimate of the exchange constant in this system
is 100 cm−1 [96]. This is in very good agreement with the minimum theoretically
found at the temperature (0.5 ± 0.1)J for the (1, 1/2) case. Drillon et al. also found
the minimum to be at T = 0.5J for the (1, 1/2) system [97]. The minimum in χT/2N
vanishes at B = 0.1J/gµB which corresponds to approximately 10T for all three
systems. It would be interesting to study the magnetic susceptibility of these systems
experimentally under the action of such high fields. The low-temperature zero-field
behavior of our systems can be compared with that of the one-dimensional ferro-
magnet. In the latter the spin-wave analysis shows that the product χT increases
in proportion to 1/T at low temperatures [98].

In finite but weak fields, the behavior of χT is different. The magnetic field opens
up a gap and χT falls exponentially to zero for temperatures less than the gap in
the applied field for all three systems. Even in this case a minimum is found at the
same temperature as in the zero-field case for the corresponding system, for the
same reason as discussed in the zero field case.

In stronger magnetic fields, the behavior of χT from zero temperature up to
kBT = Jmin (Jmin is the temperature at which the minimum in χT is observed)
is qualitatively different. The minimum in this case vanishes for all three systems.
At these field strengths the states with higher Sz values are accessed even below
kBT = Jmin. The dependence of χT above kBT = Jmin at all field strengths is
the same in all three systems. In even stronger magnetic fields, the initial sharp
increase is suppressed. At very low temperature the product χT is nearly zero and
increases almost linearly with T over the temperature range we have studied. This
can be attributed to a switch in the ground state at this field strength. The very-
high-temperature behavior of χT should be independent of field strength and should
saturate to the Curie law value corresponding to the mean of magnetic moments
due to spin-s1 and spin-s2.

The temperature dependence of specific heat is also markedly dependent on the
magnetic field at strong fields. This dependence is shown in Fig. 21 for a variety
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Fig. 21. Specific heat per site as a function of temperature T for four different values of
the magnetic field B. Zero field data are shown by squares, B = 0.01J/gµB by circles,
B = 0.1J/gµB by triangles, and B = J/gµB by diamonds.

of field strengths and for all three systems. In zero and weak magnetic fields the
specific heat has a broad maximum at different temperatures which are specific to
the system. Interestingly, the temperature at which the specific heat is maximum
corresponds closely to the temperature where the low-field χT is minimum for the
corresponding system. For a strong magnetic field (B ≈ J ), there is a dramatic
increase in the peak height at approximately the same temperature corresponding
to the specific system, although the qualitative dependence is still the same as at low
magnetic fields in all three cases. This phenomenon indicates that the higher-energy
high-spin states are brought to within kBT of the ground state at this magnetic field
strength for all three cases.

Studies of the thermodynamic properties of the dimerized alternating spin chains
in these three cases reveal trends qualitatively similar to that of the corresponding
uniform systems; this is because the low-energy spectrum does not change qualita-
tively upon dimerization.
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4.8 Magnetization Properties of a Spin Ladder

As mentioned above, a quantum spin system are sometimes characterized by mag-
netization plateaus as a function of an applied magnetic field [37–45]. In this section,
we will use the finite system DMRG method to study the magnetic properties of a
three-legged spin-1/2 ladder [99]. We consider the Hamiltonian:

Ĥ = J ′ ∑
a

∑
n

Ŝa,n · Ŝa+1,n + J
3∑

a=1

∑
n

Ŝa,n · Ŝa,n+1 − h
3∑

a=1

∑
n

Ŝz
a,n (50)

where a denotes the chain index, n denotes the rung index, h denotes the magnetic
field (we have absorbed the gyromagnetic ratio g and the Bohr magneton µB in
the definition of h), and J , J ′ > 0. It is convenient to scale out the parameter J ,
and quote all results in terms of the two dimensionless quantities J ′/J and h/J .
If the length of each chain is L , the total number of sites is N = 3L . Because the
total Ŝz is a good quantum number, it is more convenient to perform the numer-
ical computations without including the magnetic-field term in Eq. (50), and then
to add the effect of the field at the end of the computation. For the ground-state
properties we have only considered an open boundary condition (OBC) in the rung
direction, namely summation over a in the first term of Eq. (50) runs over 1, 2. For
low-temperature properties, however, we have studied both OBC and a periodic
boundary condition (PBC) in the rung direction in which we sum over a = 1, 2, 3
in the first term.

We have performed DMRG calculations (using the finite system algorithm [62])
with open boundary conditions in the chain direction. We have gone up to 120
sites, i. e. a chain length of 40. The number of dominant density matrix eigenstates,
corresponding to the m largest eigenvalues of the density matrix, that we retained
at each DMRG iteration was m = 80. We varied the value of m from 60 to 100
and found that m = 80 gives satisfactory results in terms of agreement with exact
diagonalization for small systems and good numerical convergence for large systems.
For inputting the values of the couplings into the numerical programs, it is more
convenient to think of the system as a single chain (rather than as three chains)
with the Hamiltonian:

Ĥ = 2
3

J ′ ∑
i

[
1 − cos

(
2π i

3

)]
Ŝi · Ŝi+1 + J

∑
i

Ŝi · Ŝi+3 (51)

The system is grown by adding two new sites at each iteration. Note that our
method of construction ensures that we obtain the three-chain ladder structure after
every third iteration when the total number of sites becomes a multiple of 6. For
different system sizes, starting from 48 sites and going up to 120 sites in multiples
of 6 sites, we computed the energies after doing three finite system iterations; we
found that the energy converges very well after three iterations. The energy data
are used in Figs. 22 and 23 below. After reaching 120 sites we computed the spin
correlations after doing three finite system iterations. This data are used in Figs. 24
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Fig. 22. The energy/site in units of J against 1/N at the ms = 1/2 plateau, for the three-
chain ladder with J/J ′ = 1/3. The curves indicate quadratic fits for (a) E0(M + 1, N ), (b)
E0(M, N ), and (c) E0(M − 1, N ).

and 25. All our numerical results quoted below are for J/J ′ = 1/3. We chose this
particular value of the ratio because there is a particularly broad magnetization
plateau at ms = 1/2 which can be easily found numerically.

We now describe the variety of ground-state properties we have found with OBC
along the rungs. We looked for magnetization plateaus at ms = 0, 1/2, and 1. For a
system with N sites, a given value of magnetization per rung ms corresponds to a
sector with total Sz equal to M = ms N/3. By use of the infinite system algorithm
we found the lowest energies E0(Sz, N ) in the three sectors Sz = M + 1, M , and
M−1. Then we examined the three plots of E0/N J against 1/N and extrapolated the
results to the thermodynamic limit N → ∞. We fitted these plots with the formula
E0/N J = ei + ai/N + bi/N 2 where the label i = 1, 2, 3 denotes the Sz sectors
M +1, M , and M −1. In the thermodynamic limit the values of the three intercepts
ei should match, because those are just the energy per site for the three states whose
Sz values differ by only unity. However, the three slopes ai are not equal in general.
We now show that there is a magnetization plateau if a1 + a3 − 2a2 has a non-zero
value. Because the three energies E0 are computed without including the magnetic
field term, the upper critical field hc+ where the states with Sz = M + 1 and M



162 4 Exact and Approximate Theoretical Techniques . . .

Fig. 23. Dependence of plateau widths on 1/N for (a) ms = 1/2, (b) ms = 0, and (c) ms = 1.

become degenerate is given by:

hc+(N ) = E0(M + 1, N ) − E0(M, N ) (52)

Similarly, the lower critical field hc− where the states with Sz = M and M − 1
become degenerate is given by:

hc−(N ) = E0(M, N ) − E0(M − 1, N ) (53)

We therefore have a finite interval �h(N ) = hc+(N )−hc−(N ) in which the lowest
energy state with Sz = M is the ground state of the system with N sites in the
presence of a field h. If this interval has a non-zero limit as N → ∞ we have a
magnetization plateau. Thus, in the thermodynamic limit, the plateau width �h/J
is equal to a1 + a3 − 2a2.

We will now quote our numerical results for J/J ′ = 1/3. For a rung magnetization
of ms = 1/2, i. e. M = N/6, we found the three slopes ai to be equal to 3.77, −0.02,
and −1.93 (Fig. 22). This gives the upper and lower critical fields as:

hc+/J = a1 − a − 2 = 3.79, hc−/J = a2 − a3 = 1.91,

h/J = (hc+ + hc−)/J = 1.88 (54)
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Fig. 24. Correlation function 〈Ŝ+
2,l Ŝ−

2,n〉 at the ms = 1/2 plateau for J/J ′ = 1/3.

This is a sizeable plateau width. For a rung magnetization of ms = 1 we found
the ai to be equal to 4.97, −0.24, and −5.43. Thus the upper and lower critical fields
are:

hc+/J = 5.21, hc−/J = 5.19, h/J = 0.02 (55)

Finally, for a rung magnetization of ms = 0, we need the energies of states with
M = 0 and M = ±1. Because the last two states must have the same energy, we
have a1 = a3 and it is sufficient to plot only E0(0, N ) and E0(1, N ) against 1/N .
We found a1 and a2 to be equal to 0.39 and 0.34. Thus the upper and lower critical
fields are:

hc+/J = 0.05, hc−/J = −0.05, h/J = 0.10 (56)

The plateau widths given in Eqs. (55) and (56) are rather small. In Fig. 23 we
give the plateau widths �h(N )/J as a function of 1/N for ms = 1/2, 0 and 1.

Next, we computed various two-spin correlations for the 120-site system. These
are denoted by 〈Ŝz

a,l Ŝz
b,n〉 and 〈Ŝ+

a,l Ŝ−
b,n〉. For the zz correlations it is convenient to

subtract the product of the two separate spin densities. At ms = 1/2 we found that
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Fig. 25. Correlation functions 〈Ŝ+
1,l Ŝ−

2,n〉 in the ms = 1 state for J/J ′ = 1/3.

all these correlations decay very rapidly to zero as the rung separation |l −n| grows.
In fact, the fall offs were so fast that we were unable to compute sensible correlation
lengths. The correlation lengths are of the order of one or two rungs, as is apparent
from Fig. 24.

For the state at ms = 0, on the other hand, we found that all the correlations
decay quite slowly. The decays are consistent with power law fall offs of the form
A(−1)|l−n|/|l − n|η. It is difficult to find η very accurately because the maximum
value of |l − n| is only 20; this is because we fixed one site to be in the middle of
the chain (to minimize edge effects), and the maximum chain length is 40 for our
DMRG calculations. For ms = 0 the exponent η for all the correlations was found to
be around 1. There was no difference in the behavior of the zz and +− correlations,
because this was an isotropic system; ms = 0 is the ground state if the magnetic field
is zero.

For the state at ms = 1 (which is the ground state for a substantial value of the
magnetic field only), we found that the +− correlations again decay quite slowly
consistent with a power law. The exponents η for the different +− correlations varied
from 0.61 to 0.70 with an average value of 0.66; an example is given in Fig. 25.

We now describe some low-temperature thermodynamic properties of the three-
chain system obtained using DMRG. Although DMRG is normally expected to be



4.8 Magnetization Properties of a Spin Ladder 165

Fig. 26. Dependence of magnetization on magnetic field, at six different temperatures, for
a 36-site system with OBC along the rungs and J/J ′ = 1/3.

most accurate for targeting the lowest states in different Sz sectors, earlier stud-
ies of mixed spin chains have shown that DMRG is quite reliable for computing
low-temperature properties also [79]. There are two reasons for this; the low-lying
excited states generally have a large projection on to the space of DMRG states
which contains the ground state, and the low-lying excitations in one sector are
usually the lowest states in nearby Sz sectors.

We first checked that for systems with 12 sites the results obtained by use of
DMRG agree well with those obtained by exact diagonalization. We then used
DMRG to study the magnetization, susceptibility, and specific heat of 36-site systems
with both OBC and PBC along the rungs. We computed these quantities using the
techniques described in Eqs. (46)–(49). The plots of magnetization against magnetic
field for different temperatures are shown in Fig. 26 for OBC along the rungs. The
temperature T is measured in units of J/kB. We see that the plateau at ms = 1/2
disappears quite rapidly as we increase the temperature. The plateau has almost
disappeared at T = 0.4 which is substantially lower than the width �h/J = 1.88.
The magnetic susceptibility is (exponentially) small at low temperatures in the re-
gion of the plateau, because the magnetic excitations there are separated from the
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Fig. 27. Dependence of specific heat, in units of kB, on magnetic field, at six different tem-
peratures, for a 36-site system with OBC along the rungs and J/J ′ = 1/3.

ground state by a gap. Similar results for the magnetization and susceptibility are
found for PBC along the rungs.

The specific heats at the ms = 1/2 plateau, however, reveal an interesting dif-
ference between OBC and PBC along the rungs. Whereas it is very small at low
temperatures for OBC (Fig. 27), it is not small for PBC, although a plateau is ob-
served in the same range of magnetic fields as the magnetization itself. This obser-
vation strongly suggests that the system with PBC along the rungs has non-magnetic
excitations which do not contribute to the magnetization or susceptibility, but do
contribute to the specific heat. A more direct comparison between OBC and PBC
along the rungs is shown in Fig. 28. Although these non-magnetic excitations have
been studied by previous authors [38, 39, 100], we believe that our specific heat plots
are the best physical evidence for their existence. To show these excitations even
more explicitly, we present in Fig. 29 all the energy levels for a 12-site chain in the
sector Sz = 2 (i. e. ms = 1/2), using exact diagonalization. It is clear that the ground
state is well separated from the excited states for OBC, but it is at the bottom of a
band of excitations for PBC; these excitations are non-magnetic, because they have
the same value of Sz as the ground state.
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Fig. 28. Comparison of the dependence of specific heat and susceptibility on the magnetic
field for a 36-site systems with OBC and PBC along the rungs.

We summarize our results for a three-chain spin-1/2 ladder with a large ratio of
inter-chain coupling to intra-chain coupling. There is a wide plateau with rung mag-
netization given by ms = 1/2 for both OBC and PBC along the rungs. For OBC the
two-spin correlations are extremely short-ranged, and the magnetic susceptibility
and specific heat are very small at low temperature in the plateau. All these are
consistent with the large magnetic gap. At other values of ms the two-spin correla-
tions fall off as power laws. For PBC, the magnetic susceptibility is again very small
at low temperature in the plateau. The specific heat, however, goes to zero much
more slowly; this dramatically shows the presence of non-magnetic excitations.

To summarize this review, we have discussed a variety of numerical and ana-
lytical methods for studying spin clusters and quasi-one-dimensional spin systems.
The methods discussed for spin clusters are directly relevant to areas of current
interest, e. g. quantum tunneling in the presence of time-dependent magnetic fields
[17–20, 95]. One-dimensional spin systems sometimes have unusual properties (e. g.
a disordered ground state with an excitation gap above it) which are not observed
in similar models in higher dimensions. The techniques described here, particularly
the DMRG method, are well-suited to the study of extended systems in one dimen-
sion.
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Fig. 29. Comparison of the energy spectra, in units of J, for the 12-site system with OBC
and PBC along the rungs. The energies in the Sz = 2 sector are shown for J/J ′ = 1/3.
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no phase transition from Néel to spiral, even at zero temperature.

[50] I. Affleck, Nucl. Phys. B 1986, 265, 409.
[51] Y. Kato, A. Tanaka, J. Phys. Soc. Jpn. 1994, 63, 1277; K. Totsuka, Y. Nishiyama, N.

Hatano, M. Suzuki, J. Phys. Condens. Matter 1995, 7, 4895.
[52] S. Rao, D. Sen, Nucl. Phys. B 1994, 424, 547.
[53] D. Allen, D. Senechal, Phys. Rev. B 1995, 51, 6394.
[54] G. Sierra in: G. Sierra, M. A. Martin-Delgado (Eds.) Strongly Correlated Magnetic and

Superconducting Systems, Lecture Notes in Physics 478, Springer, Berlin, 1997.
[55] A.O. Gogolin, A.A. Nersesyan, A. M. Tsvelik, Bosonization and Strongly Correlated

Systems, Cambridge University Press, Cambridge, 1998.
[56] R. Shankar, Lectures given at the BCSPIN School, Kathmandu, 1991. In Y. Lu, J. Pati,

Q. Shafi (Eds.) Condensed Matter and Particle Physics, World Scientific, Singapore,
1993.

[57] J. von Delft, H. Schoeller, Arm. der Physik 1998, 4, 225.
[58] J.P. Boucher, L.P. Regnault, J. de Phys. 1996, 16, 1939.
[59] K.G. Wilson, Rev. Mod. Phys. 1975, 47, 773.
[60] J.W. Bray, S.T. Chui, Phys. Rev. B 1979, 19, 4876; J.E. Hirsh, Phys. Rev. B 1980, 22,

5259.
[61] S.R. White, R.M. Noack, Phys. Rev. Lett. 1992, 68, 3487.
[62] S.R. White, Phys. Rev. Lett. 1992, 69, 2863; Phys. Rev. B 1993, 48, 10345.
[63] R. McWeeny, B.T. Sutcliffe, Methods of Molecular Quantum Mechanics, Academic

Press, London, 1969.
[64] Y. Anusooya, S.K. Pati, S. Ramasesha, J. Chem. Phys. 1997, 106, 1.
[65] S.R. White, Phys. Rev. Lett. 1992, 45, 5752.



References 171

[66] R. Chitra, S.K. Pati, H.R. Krishnamurthy, D. Sen, S. Ramasesha, Phys. Rev. B 1995,
52, 6581; S.K. Pati, R. Chitra, D. Sen, H.R. Krishnamurthy, S. Ramasesha, Europhys.
Lett. 1996, 33, 707.

[67] S.R. White, D.A. Huse, Phys. Rev. B 1993, 48, 3844; E.S. Sorensen, I. Affleck, Phys.
Rev. Lett. 1993, 71, 1633.

[68] E.S. Sorensen, I. Affleck, Phys. Rev. B 1994, 49, 13235; Phys. Rev. B 1994, 49, 15771.
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5 Magnetic Properties of Self-assembled
[2 × 2] and [3 × 3] Grids

Laurence K. Thompson, Oliver Waldmann, and Zhiqiang Xu

5.1 Introduction

An euphoric view of the future of chip technology expressed by Gordon Moore
in the nineteen-sixties indicated that “The complexity [of cheap integrated circuits]
has increased at a rate of roughly a factor of two per year” [1]. The view was held for
quite a few years, until it became revised to a doubling every one and a half years.
The explosion in computer power in the nineteen-eighties and beyond hinged dra-
matically on the ability of industry to miniaturize chips, and it appeared that there
was no limit (e. g. 64 transistors per chip in 1965 versus 28 million transistors in
a Pentium III processor). In recent years the realization that Moore’s Law would
finally fail has led to the search for new devices not constrained by the physical lim-
itations of chip size. Current chip “pitches” in the 150 nm range can lead to electron
tunneling through the chip “gates”, and so a realistic size limit is fast approaching.
Magnetic data storage faces similar scaling problems, although at a lower dimen-
sion. It is estimated that magnetic grain size cannot be scaled below 10 nm without
the occurrence of thermal self-erasure problems. Thus in both areas the time is ripe
for new approaches or even “new physics” [1–3].

Paramagnetic metal ions with covalent radii of the order of 1 Å (0.1 nm) can be
brought into close proximity with suitable diamagnetic, single atom bridging lig-
ands, and with appropriate magnetic orbital overlap situations can produce parallel
or antiparallel alignment of the metal centered spins (ferromagnetic or antiferro-
magnetic behavior respectively). For simple dinuclear systems many examples of
such spin coupled systems are known, but most are antiferromagnetically coupled.
Increasing the number of spin centers in a polynuclear, bridged arrangement is more
of a challenge, but can be achieved using polydentate ligands of various types. One
approach uses well-defined, polydentate ligands to impose specific geometries on
the resulting arrays, while another approach uses simple ligands, and essentially is
controlled by properties of the metal ion (e. g. in cyanide or carbonyl clusters). An
intermediate approach uses coordinatively flexible ligands.

Grid-like two-dimensional arrangements of spin centers offer significant benefits
to random clusters, in that flat surface arrays are possible (vide infra), and so the
prospects for addressing individual molecules or even metal atoms are enhanced.
The organization of paramagnetic metal centers into regular grid-like arrangements
has been achieved using the ligand directed, self-assembly approach [4], and exam-
ples of [2 × 2] and [3 × 3] grid structures have been produced. The success of this
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approach relies on the fact that the structural attributes necessary for the formation
of a specific grid arrangement are pre-programmed into the ligand itself, and the
grid forms by a self assembly process in which the donor groupings of the ligand are
read by the metal ions in terms of their coordination algorithms as the polynuclear
structure is built [5].

A number of these [2 × 2] and [3 × 3] grid structures have shown a remarkable
variety of magnetic properties, with isotropic coupling characterized by examples
of both antiferromagnetic and ferromagnetic exchange. Evidence for anisotropic
and biquadratic exchange couplings has been reported, systems with pronounced
magnetic anisotropy and/or strong interplay between ligand-field and exchange in-
teractions have been identified, and even cooperative spin-crossover effects have
been observed. In this review, the structural and magnetic properties of such systems
will be described with a focus on the isotropic coupling situation. A brief theoretical
treatment of the magnetism will be presented.

Section 5.2 deals with a survey of the ligands and ligand types found to be suitable
for self-assembly into grids, with examples of structures of typical complexes. Sec-
tion 5.3 examines the magnetic properties, in relation to structure, and Section 5.4
examines possible applications of such systems to information storage, and the prob-
lem of addressing such systems in the nanoscale realm.

5.2 Polytopic Ligands and Grid Complexes

The complexes described in this chapter will be based on the definition of a metal-
lic coordination grid as an “array of metal centers positioned at the vertices of
a (approximate) square lattice”, with the number of occupied rows and columns
greater than one. This implies a two-dimensional flat or close to flat polynuclear
array. From the magnetic perspective only systems with paramagnetic metal centers
that are linked by diamagnetic monatomic or poly-atomic bridges, with metal–metal
separations <10 Å, will be discussed. The characteristic feature of such structures
is the parallel ligand groupings connecting the metal centers.

Regular grids have been successfully produced from polytopic ligands with “n”
coordination pockets, which self-assemble with metal ions to form [n × n] grids [5].
The smallest members of such a series would be [2 × 2] tetranuclear complexes
(Scheme 1). The distinction between grids, squares and small metalla-cycles in this
class is essentially semantic, and from a magnetic perspective there is no symmetric
difference (vide infra). Systems with higher nuclearity will be restricted to grids, as
formerly defined, with single metal ion periodicities, and so will not include metalla-
cyclic rings per se. The definition does not require that all vertices of a [n × m] grid
have to be occupied by a metal ion, and so incomplete grid structures, e. g. with
a “pin wheel” shape, are also included. An extensive review of “self-assembled
structural motifs in coordination chemistry” [6] highlights the structural features of
some examples of “grids” and “squares” in this class.
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Scheme 1. Model for self-assembly of [2×2]
grid.

5.2.1 [2 × 2] Ligands

Building grids of nanoscopic dimensions from individual subunits using sequen-
tial bond formation methodologies is time-consuming and results in low yields.
Supramolecular architectures can conveniently be approached using self assembly
chemistry by including key design elements in the ligands that allow the metal ions
to read the ultimate structural outcome as the system builds [4, 5]. Typical ligands
that produce [2×2] square grids are shown in Fig. 1, with examples of their primary
coordination modes. They all have two potential coordination pockets (ditopic) and
involve monatomic, diatomic, tri-atomic and tetra-atomic bridging groups. In each
example [2 × 2], thermodynamically favored, grid complexes are formed by self
assembly processes in high yield, with homoleptic and non-homoleptic examples.

Fig. 1. Polytopic ligands and their coordination modes.
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Fig. 1. Continued

5.2.2 Representative [2 × 2] Complexes

Ligand 1 has a linear arrangement of coordination pockets, and forms five-
membered chelate rings on coordination. The complex [Cu(L1)]4(PF6)4 (17) [7]
(Fig. 2) forms in 80% yield and has a [2×2] square grid structure with two pairs of
parallel ligands above and below the [Cu4(µ-O)4] plane. The copper atoms are sep-
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Fig. 2. Structural representation of
[Cu(L1)]4(PF6)4 (17).

Fig. 3. Structural representation of the core in
[Ni(L2)]4(PF6)4 · 4EtOH · H2O (18).

arated by 4.04 Å, with Cu–O–Cu angles of 140.6◦. Ligands of type 2 have a similar
arrangement of coordination pockets, and self assemble in the presence of Ni(II)
and Co(II) ions to produce [Ni(L2)]4(PF6)4 · 4EtOH.H2O (18) (R = phenyl) [8] and
[Co(L2)]4(CH3COO)4 · H2O (19) (R = pyridyl) [9] (Fig. 3 shows the core structure
only for 18; 19 has an identical core), with square [M4(µ-S)4] cores, and two pairs
of parallel ligands above and below the metal plane. The M–M distances are 4.8 Å
and 4.43 Å, respectively, and the M–S–M angles are 163◦ and 151◦ respectively.

Ligands of type 3 have produced numerous [2 × 2], [M4(µ-O)4] grids (M =
Cu(II), Ni(II), Mn(II), Co(II)) in high yield with similar dimensions. Figure 4
shows the structure of the cation in [Cu4(L3)4(H2O)](NO3)4 · 3H2O (20) (R1 =
pyridine; R2 = pyrazine) [10a], with Cu–Cu distances of 4.01–4.05 Å, and Cu–
O–Cu angles 139.8–141.0◦. A striking feature of this and related Cu4 grid com-
plexes is the strictly orthogonal bridging arrangement between the dx2−y2 ground
state copper centers (vide infra). Figure 5 shows the structure of the cation in
[Ni4(L3)4(H2O)4](NO3)4 · 8H2O (21) (R1 = R2 = pyridine), with Ni–Ni distances
in the range 3.95–3.98 Å, and Ni–O–Ni angles in the range 136.2–140.1◦ [10a]. Fig-
ure 6 shows the structure of the cation in [Mn4(L3)4(H2O)4](NO3)4 · H2O (22)
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Fig. 4. Structural representation of
[Cu4(L3)4(H2O)](NO3)4 · 3H2O (20)
(R1 = pyridine; R2 = pyrazine).

Fig. 5. Structural representation of
[Ni4(L3)4(H2O)4] (NO3)4 · 8H2O (21)
(R1 = R2 = pyridine).

Fig. 6. Structural representation of
[Mn4(L3)4(H2O)4](NO3)4 · H2O (22)
(R1 = pyridine; R2 = pyrazine).



5.2 Polytopic Ligands and Grid Complexes 179

Fig. 7. Structural representation of
[Co4(L3)4(H2O)4)] (ClO4)4 · 3H2O (23)
(R1 = R2 = pyrazine).

Fig. 8. Structural representation of
[Cu3Fe(L3)4(NO3)]2(ClO4)4(NO3)4
(24) (R1 = R2 = pyridine).

(R1 = pyridine; R2 = pyrazine), with Mn–Mn distances in the range 3.91–3.97 Å
and Mn–O–Mn angles in the range 127.9–129.3◦ [10b]. Figure 7 shows the struc-
ture of the cation in [Co4(L3)4(H2O)4)](ClO4)4 · 3H2O (23) (R1 = R2 = pyrazine),
with Co–Co distances in the range 3.88–3.95 Å, and Co–O–Co angles in the range
133.5–136.0◦ [10b]. Mixed metal grids of this ligand type can also be produced, and
the related structure of a [Fe(III)Cu3(µ-O)4] square grid cation in the complex
[Cu3Fe(L3)4(NO3)]2(ClO4)4(NO3)4 (24) (R1 = R2 = pyridine) is shown in Fig. 8
[10c]. Ligands of type 3 exist in a number of different conformational forms e. g.
4, and can accordingly coordinate in a number of different ways. In the complex
[Cu4(L4)4(H2O)2](NO3)4 · 4H2O (25) (Fig. 9) [10a] a flat rectangular grid is ob-
served involving two pairs of ligands with different coordination modes, one pair
bridging by their alkoxide oxygen atoms, and the other pair via the N–N diazine
single bonds. Cu–Cu distances are 4.097 Å and 4.759 Å, with a Cu–O–Cu angle of
139.9◦. Cu(1) and Cu(2) are disposed in an almost trans arrangement around the
N–N bonds (Cu–N–N–Cu torsional angle 158.8◦).



180 5 Magnetic Properties of Self-assembled [2 × 2] and [3 × 3] Grids

Fig. 9. Structural representation of
[Cu4(L4)4(H2O)2](NO3)4 · 4H2O (25).

Fig. 10. Structural representation of
[Cu(L5)]4(NO3)4 · 8H2O (26).

Ligand 5 contains a rotationally flexible N–N bond, and self assembles to pro-
duce the [Cu4(µ-N-N)4] homoleptic [2 × 2] grid complex [Cu(L5)]4(NO3)4 · 8H2O
(26) [11]. Figure 10 shows the structure of the cation. An interesting 90◦ twist of the
ligand around the N–N bond leads to effective magnetic isolation of the Cu(II) cen-
ters (vide infra), but this produces a significant tetrahedral distortion of the cluster.
Ligand types 6 combine terminating pyridine and bridging pyrazole groups, and self
assemble to form [2×2] grids with pyrazolate N–N bridges. With 6 (R = pyridyl) the
complex [Cu4(L6)6(MeOH)2](PF6)2 · 2MeOH (27) [12] (Fig. 11) is formed and in-
volves six pyrazole bridges with two pairs bridging Cu(1) and Cu(2) equatorially, and
the other pair bridging Cu(1) and Cu(2a) axially. This leads to an essentially square
grid with Cu–Cu separations of 3.939 Å and 3.984 Å. Ligand 6 (R = H) behaves dif-
ferently, and forms [Cu4(L6)4(dmf)4](PF6)4 · 6dmf (28) [12]. Figure 12 shows that
the [2 × 2] grid has two pairs of parallel, mutually perpendicular ligands arranged
above and below the Cu4 grid, as in the earlier examples. Each adjacent pair of cop-
per centers is bridged equatorially by one pyrazole N–N linkage. Terminal copper
sites are occupied by solvent molecules in both cases.
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Fig. 11. Structural representation of
[Cu4(L6)6(MeOH)2](PF6)2 · 2MeOH
(27) (R = pyridyl).

Fig. 12. Structural representation of
[Cu4(L6)4(dmf)4](PF6)4 · 6dmf (28)
(R = H).

Ligand 7 self assembles in the presence of Cu(II) ions to produce square [2 × 2]
grids with one terminal and one bridging imidazolate group per copper center. Fig-
ure 13 shows the structure of the cation in [Cu(L7)]4(NO3)2Cl2 · 1.25H2O (29) [13].
Cu–Cu distances are in the range 6.10–6.15 Å. The four copper centers are con-
nected equatorially by the imidazolate bridges in a flat array (Cu–Cu–Cu–Cu tor-
sional angle 18.3◦). Ligand 8 (1,3-dimethylvioluric acid) acts in a bis-bidentate fash-
ion and forms a flat, square [Cu4(µ-NO)4] “oximate” bridged [2 × 2] grid complex
[Cu(L8)(H2O)2]4(ClO4)4 · 2H2O (30) [14] (Fig. 14; bridging oximate groups are dis-
ordered over two positions) with Cu–Cu distances of 4.764(3) Å, and the copper
centers all linked equatorially.
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Fig. 13. Structural representation of [Cu(L7)]4(NO3)2Cl2 · 1.25H2O (29).

Fig. 14. Structural representation of [Cu(L8)(H2O)2]4(ClO4)4 · 2H2O (30).
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Fig. 15. Structural representation of [Ni4(L9Et)8] · 4CH2Cl2 (31).

Ligands of type 9 can act in a bis-bidentate bridging mode, and with Ni(II) self
assemble to produce a [2×2] distorted square grid complex [Ni4(L9Et)8] · 4CH2Cl2
(31) [15] (Fig. 15). The six-coordinate nickel(II) centers are linked by three atom
bridges, and as a consequence Ni–Ni distances are quite long (5.567 Å). Ligands
of type 10 create a linear array of coordination pockets, as in 1–3, leading to ideal
geometric conditions for self-assembly into square grids. Ligand 10 (R1 = phenyl;
R2 = H) reacts with Co(BF4)2 to produce [Co(L10)]4(BF4)8 (32) [16] in high yield.
Figure 16 shows the cationic structure with four distorted octahedral Co(II) centers
bridged by four pyrimidine groups, and two pairs of parallel ligands above and
below the metal plane. Co–Co distances are quite long (6.453–6.570 Å), as would
be expected, because of the three atom bridges. A corresponding Fe(II) complex
[Fe(L10)]4(ClO4)8 (33) was obtained with ligand 10 (R1 = phenyl; R2 = H) with an
iso-structural, homoleptic pyrimidine bridged Fe4 cation. Structural studies at 100 K
and 293 K reveal significant differences in Fe–N bond distances, some of which are
intermediate between those expected for LS and HS Fe(II) systems. This is related
to the demonstrated spin crossover behavior (vide infra) [17].

The bis-bidentate ligand 11 undergoes self-assembly in the presence of Ni(II)
ions to produce a [2 × 2] square grid complex [Ni4(L11)4(CH3CN)8](BF4)8 (34)
[18] (Fig. 17), with the four octahedral Ni(II) centers bridged on opposite sides of
each ligand through the tetrazine subunit, with remaining coordination sites filled
by acetonitrile molecules. The inclusion of a BF−

4 ion in the grid cavity is viewed
as evidence of an anion cyclization templating effect. The four atom bridging con-
nection between Ni(II) centers leads to quite long Ni–Ni separations (6.84–6.89 Å).
An equivalent bridging situation exists in 12 and 13, which both bridge through
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Fig. 16. Structural representation of
[Co(L10)]4(BF4)8 (32).

Fig. 17. Structural representation
of [Ni4(L11)4(CH3CN)8](BF4)8
(34).

the pyrazine fragments of the ligands. The complex [Cu4(L12)4Cl7]nCln · 15nH2O
(35) [19] (Fig. 18) has a [2 × 2] almost square grid structure with four ligands ar-
ranged in two parallel pairs connecting Cu(1) and Cu(2) axially, and Cu(2) and
Cu(1a) equatorially. Cu–Cu distances are long (6.89–7.30 Å), due to the four atom
pyrazine bridge connections. Cu(1) and Cu(2) form axial bonds to N(6) and N(7)
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Fig. 18. Structural representation of
[Cu4(L12)4Cl7]nCln · 15nH2O (35).

Fig. 19. Structural representation of
[Fe4(L14)4](ClO4)6 · 7H2O (37).

respectively, while the connection between Cu(1) and Cu(2–4) links the dx2−y2 cop-
per centers equatorially, resulting in a “dimer of dimers” system (vide infra). The
complex [Co(L13)Cl2]4 · 27H2O (36) [20] has a similar structure with the ligands
bridging through the pyrazine subunits in exactly the same way. Co–Co distances
(7.1 Å) are long, as would be expected.

Ligand 14 has two fairly widely spaced N2O coordination pockets, and self as-
sembles with e. g. Fe(ClO4)2 to produce a square [2 × 2] grid with oxalyl hydrazide
bridges between the metal centers. Figure 19 shows the cation structure in the com-
plex [Fe4(L14)4](ClO4)6 · 7H2O (37) [21]. Fe(II)–Fe(II) distances fall in the range
6.75–7.25 Å, and two oxalyl–hydrazide bridges have a trans configuration, while the
other two are cis. Extension of this ligand to include two additional pyridine rings in
place of the NH2 groups (15) allows for a highly novel self assembly situation where
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Fig. 20. Structural representation of
[Ni8(L15)4(H2O)8](BF4)8 · 16H2O (38).

Fig. 21. Structural representation of the
octanuclear core in
[Ni8(L15)4(H2O)8](BF4)8 · 16H2O (38).

the same primary square grid arrangement can be produced, with additional metal
centers attached to the sides of the [2×2] grid. 15 self assembles in high yield in the
presence of Ni(BF4)2 to produce an expanded octanuclear grid [22]. The structure
of [Ni8(L15)4(H2O)8](BF4)8 · 16H2O (38) is shown in Fig. 20, revealing the oxalyl–
hydrazide bridged square Ni(II)4 [2×2] grid core (Fig. 21; Ni1–Ni3–Ni5–Ni7), with
appended Ni(II) centers (Ni2–Ni4–Ni6–Ni8) attached to the external coordination
pockets. This effectively creates a large octanuclear ring with almost trans N–N
single bond bridges linking adjacent Ni(II) centers (Ni–N–N–Ni torsional angles
152.0–161.0◦).
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5.2.3 [3 × 3] Ligands and their Complexes

Extensions of the geometric features that successfully led to [2 × 2] grids with the
ligand 3 systems have been programmed into ligand 16 (Fig. 1). The linear arrange-
ment of three contiguous coordination pockets with the formation of five-membered
chelate rings leads successfully to [3 × 3] square grids in high yields. The complex
[Mn9(L16)6](ClO4)6 · 18H2O (39) (Fig. 22) involves a homoleptic structure with six
parallel ligands, arranged in two groups of three, above and below the pseudo-
planar grid of nine alkoxide bridged Mn(II) centers. The central [Mn9(µ2-O)12]
core is shown in Fig. 23 [23, 24]. The Mn(II) centers are closely spaced (Mn–Mn

Fig. 22. Structural representation
of [Mn9(L16)6](ClO4)6 · 18H2O
(39).

Fig. 23. Structural representation of the
core in [Mn9(L16)6](ClO4)6 · 18H2O (39).



188 5 Magnetic Properties of Self-assembled [2 × 2] and [3 × 3] Grids

Fig. 24. Structural representation of the core in
[Cu9(L16)6](NO3)12 · 9H2O (40).

Fig. 25. Structural representation of the Cu8 fragment in
[Cu8(L16)4(CH3OH)4(CH3CN)4][Gd(NO3)4(H2O)2]2(NO3)6 · 1.3Cu(NO3)2 · 10H2O (41).

3.9–4.0 Å), with Mn–O–Mn angles in the range 126.6–130.0◦. An analogous [Cu9(µ2-
O)12] square grid is found in the complex [Cu9(L16)6](NO3)12 · 9H2O (40) [24, 25].
The core (Fig. 24) has similar dimensions (Cu–Cu 4.03–4.17 Å; Cu–O–Cu 136.5–
143.6◦), and all copper centers are connected orthogonally to neighboring metal
sites.

In an attempt to introduce lanthanide ions into a nine metal grid assembly 16 was
reacted sequentially with Gd(NO3)3 and Cu(NO3)2, with the formation of an un-
usual octanuclear grid-like cluster (Fig. 25) in the complex [Cu8(L16)4(CH3OH)4∼
(CH3CN)4][Gd(NO3)4(H2O)2]2(NO3)6 · 1.3Cu(NO3)2 · 10H2O (41), with a “pin-
wheel” arrangement of four peripheral Cu(II) centers attached by alkoxide bridges
to a typical [Cu4(µ-O)4] central core [26]. Figure 26 shows the core structure. As



5.3 Magnetic Properties of Grid Complexes 189

Fig. 26. Structural representation of the octanuclear core in
[Cu8(L16)4(CH3OH)4(CH3CN)4][Gd(NO3)4(H2O)2]2(NO3)6 · 1.3Cu(NO3)2 · 10H2O (41).

in previous copper examples of alkoxide bridged grids in this class all bridging con-
nections between adjacent Cu(II) centers are strictly orthogonal, as a result of a
twisting of the copper magnetic planes relative to neighboring magnetic planes.

5.3 Magnetic Properties of Grid Complexes

The proximity of the paramagnetic metal ion centers in these grid complexes can
lead to spin exchange interactions through the intervening diamagnetic bridge
groups. Representative examples of exchange coupling schemes will be described,
and related to the symmetry properties of the particular grid arrangement.

5.3.1 [2 × 2] Complexes

In a general case the square (D4h) or distorted square (D2d) [2 × 2] grid can be de-
scribed by an exchange coupling scheme involving two exchange integrals (J1, J2)
according to the appropriate Hamiltonian expression (Eq. 1) (Fig. 27):

Hex =−2J1
{

S2 · S3+S1 · S4
}−2J2

{
S1 · S2+S3 · S4

}−2J3
{

S1 · S3+S2 · S4
}

(1)
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Fig. 27. Magnetic model for a [2 × 2] grid.

where J1 is the exchange along the vertical sides and J2 along the horizontal sides
of the square. Diagonal terms (J3) can be set to zero because cross-coupling terms
are assumed to be insignificant. Using the conventional spin-vector coupling model
[27, 28] eigenvalues of Eq. (1) can be obtained analytically for a D4h [2 × 2] grid
with J = J1 = J2. The eigenvalues are then given by

E(S′, S13, S24) = −J [S′(S′ + 1) − S13(S13 + 1) − S24(S24 + 1)]

−J3[S13(S13 + 1) + S24(S24 + 1)]

where S13 = S1 + S3; S24 = S2 + S4; and S′ = S1 + S2 + S3 + S4.
Another coupling situation which arises in the limit J1 = J3 = 0 is that of a

“dimer of dimers” (see Fig. 27 for model), corresponding to the general Hamiltonian

Hex = −2J2S1 · S2 − 2J2′S3 · S4

where the horizontal coupling strengths might assume different values J2 and J2′.
Using the same method the eigenvalues are obtained as:

E(S′, S12, S34) = −J2[S12(S12 + 1)] − J2′[S34(S34 + 1)]

where S12 = S1 + S2; S34 = S3 + S4, and S′ = S12 + S34. All these results are valid
for arbitrary values of the spin quantum numbers Si (i = 1 . . . 4)

χM ′ = Nβ2g2

3k(T − θ)

∑
S′(S′ + 1)(2S′ + 1)E−E(S′)/kT

∑
S′(2S′ + 1)E−E(S′)/kT

(2)

χM = χM ′(1 − ρ) + 2Nβ2g2ρ

3kT
+ TIP (3)

Using the addition rules for spin vectors the allowed values for S′, and S13, S24, or
S12, S34 respectively can be obtained. Substituting the appropriate energy terms into
the van Vleck equation (Eq. 2), the susceptibility values can be computed for a par-
ticular temperature range. In practice this can be achieved by the use of simple pro-
gramming techniques whereby iterative procedures span the required S′ values for
fitted values of J , in routines that allow regression of the experimental data against
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Eq. (3) [29]. Best fit values of g and J are thus obtained, allowing for paramagnetic
impurity (fraction ρ), TIP (temperature independent paramagnetism), and a Weiss-
like corrective term (θ) to deal with small intermolecular exchange effects. A review
by Murray [30] deals more generally with the magnetic properties of tetranuclear
complexes.

5.3.2 [3 × 3] Complexes

A similar approach can be adopted to deal with the [3 × 3] grid cases using an
expanded Hamiltonian expression (Eq. 4) that assumes different J values for the
interactions within the external ring of eight metal ions (J1), and for the interac-
tion between the central metal and its immediate neighbors (J2) (model based on
Fig. 28).

Hex = −J1
{

S1 · S2 + S2 · S3 + S3 · S6 + S6 · S9 + S8 · S9

+ S7 · S8 + S4 · S7 + S1 · S4
}

− J2
{

S2 · S5 + S5 · S6 + S5 · S8 + S4 · S5
}

(4)

However, the energy eigenvalues cannot be obtained analytically as for the
[2×2] grid examples described in the previous section. Their calculation requires the
machinery of irreducible tensor operators [31, 32] and numerical diagonalization
routines.

Dealing with such a complex system leads to a situation where, depending on the
metal ion spin state, matrix dimensions quickly exceed the capacity of most comput-
ers. In the case of Cu(II) (S = 1/2) this is not a problem, but for Mn(II) (S = 5/2)
calculations of the spin state ladder cannot be completed on a Pentium III based
computer, even if all symmetries of the Hamiltonian (Eq. 4) are considered [32].
Simplification of Eq. (4) assuming J1 = J2 does enable fitting of the experimental
data in an acceptable timeframe, since in this case the energy spectrum needs to be
calculated numerically only once. We have developed the MAGMUN/ow0L pro-
gram package, which handles such a situation. It is freely available on request from
the authors [33]. In an initial step the energy spectrum is calculated with ow0L and
stored as a “.spk” file. This file is then opened with MAGMUN, which performs the

Fig. 28. Magnetic model for a [3 × 3] grid.
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fitting according to Eqs. (2) and (3). If not otherwise stated the theoretical curves
presented in this review were obtained with these programs.

5.3.3 Magnetic Properties of [2 × 2] and [3 × 3] Grids

Complex 17 (Fig. 2) appears to be coupled very weakly antiferromagnetically, with
a slight drop in χT below 25 K, associated with J = −0.24 cm−1 [7], as determined
by data fitting to Eqs. (1)–(3) for J = J1 = J2. The very weak coupling is consistent
with the orthogonal arrangement of the magnetic d orbitals relative to the phenoxide
bridging connections, despite the large Cu–O–Cu angles (>140.0◦), but surprisingly
inconsistent with the properties observed for e. g. 20 and related compounds (vide
infra). 18 (Fig. 3) appears to exhibit strong intra-molecular anti-ferromagnetic cou-
pling, but the magnetic results are somewhat inconclusive. No magnetic properties
are reported for 19 [8, 9].

Complex 20 (Fig. 4) has a similar orthogonal arrangement to 17 in which the
metal ion dx2−y2 orbitals are twisted relative to their neighbors, with short/long
axial/equatorial contacts through the alkoxide bridges. 20 displays magnetic prop-
erties typical of an intra-molecular ferromagnet [10a]. Figure 29 shows the vari-
ation of µ (mol) as a function of temperature, with an increase in moment with
decreasing temperature to a maximum of 4.8 µB at 5 K. The data were fitted to
Eq. (3) (Si = 1/2) to give g = 2.119(7), J = 9.8(4) cm−1, ρ = 0.00002, θ = −0.5 K,
TIP = 0.000234 cm3 mol−1, 102 R = 0.48 (R = [�(χobs−χcalc)2/�χobs2]1/2). The
solid line in Fig. 29 was calculated with these parameters. Magnetization data as a
function of field at 2 K (Fig. 30) can be fitted successfully to the appropriate Brillouin
function for g = 2.119, S = 4/2, thus confirming the ferromagnetic ground state.
The remarkable feature of this compound, and several others like it [10a, b], is the
ferromagnetic behavior. The close spacing of the metal centers, and the very large
Cu–O–Cu bridge angles, would normally have dictated strong anti-ferromagnetic
exchange, as a result of the usually efficient overlap situation between the copper
magnetic orbitals via the alkoxide bridges, if they were connected equatorially [34–
36]. However the orthogonal bridging interactions in this case clearly impede this

Fig. 29. Magnetic data (Ìmol
versus temperature) for
[Cu4(L3)4(H2O)](NO3)4.3H2O (20)
(see text for fitted parameters).
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Fig. 30. Magnetization versus field data for
[Cu4(L3)4(H2O)](NO3)4 · 3H2O (20) at
2 K.

Fig. 31. Magnetic data (χmol versus
temperature) for [Ni4(L3)4(H2O)4]
(NO3)4 · 8H2O (21) (see text for fitted
parameters).

process, as the copper magnetic orbitals orient themselves at right angles to those
in neighboring atoms, leading to the ferromagnetic behavior.

Complex 21 (Fig. 5) has a similar square alkoxide bridged structure, but or-
bital orthogonality is not an issue in the nickel case. Figure 31 clearly shows that
the intra-molecular exchange coupling is anti-ferromagnetic, and a data fitting to
Eq. (3) (Si = 1) gives g = 2.29(1), J = −13.6(2) cm−1, ρ = 0.012, θ = 0 K,
TIP = 0.000800 cm3 mol−1, 102 R = 0.70. The solid line in Fig. 31 was calculated
with these parameters. The moderate anti-ferromagnetic exchange is entirely con-
sistent with the large Ni–O–Ni angles [10a, 37]. 22 (Fig. 6) displays similar anti-
ferromagnetic properties with a magnetic moment per mole dropping from 11.4 µB
at 300 K to 3.5 µB at 4.5 K. A similar data treatment using Eq. (3) (Si = 5/2)
gave g = 1.99(1), J = −2.85(4) cm−1, ρ = 0.014, θ = 0 K, TIP = 0 cm3 mol−1

(102 R = 1.0). Such behavior is again consistent with the large Mn–O–Mn bridge
angles [10b]. 23 (Fig. 7) has a similar drop in moment (9.4 µB at 300 K, 3.5 µB
at 5 K), and surprisingly gave a good fit to Eq. (3) (S1 = 3/2) for g = 2.42(1),
J = −6.95(4) cm−1, ρ = 0.004, TIP = 0.001200 cm3 mol−1 (102 R = 1.2). The intra-
molecular anti-ferromagnetic coupling is again consistent with the alkoxide bridged
square structure, and the large Co–O–Co angles [10b].
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Fig. 32. Magnetic data (Ìmol
versus temperature) for
[Cu3Fe(L3)4(NO3)]2(ClO4)4(NO3)4
(24) (see text for fitted parameters).

Complex 24 (Fig. 8) has a unique structural arrangement in which axial con-
nections between both Cu(3) and Cu(1) and Fe(1), and between Cu(2) and Cu(1),
and an equatorial connection between Cu(2) and Cu(3) (Cu(2)–O(2)–Cu(3) 142.0◦)
would suggest a combination of ferromagnetic and anti-ferromagnetic interactions.
The plot of µ (mol) as a function of temperature (Fig. 32) shows a drop from 6.68 µB
at 300 K to 6.38 µB at 35 K followed by a rise to 7.20 µB at 2 K, suggesting that this
is the case. The magnetic data were fitted to an exchange expression based on the
Hamiltonian (Eq. 5).

Hex = J1SCu2SCu3 − J2SFe1SCu1 − J3SFe1SCu3 − J4SCu1SCu2 (5)

The best fit was obtained when J3 and J4 were set to zero, corresponding to
a “dimer of dimers” situation, with gav. = 2.04, J1 = −61.5 cm−1, J2 = 1.1 cm−1,
TIP = 0.000150 cm3 mol−1. The solid line in Fig. 32 was calculated with these values.
This is reasonable given the orthogonal Cu–Fe and Cu–Cu connections. The signif-
icant anti-ferromagnetic coupling between Cu(2) and Cu(3), in combination with
the ferromagnetic interaction between Fe(1) and Cu(1) would of necessity lead to a
S = 3 ground state. Magnetization versus field data at 2 K (0–5 T) (Fig. 33) confirm
this [10c] (solid line calculated from the appropriate Brillouin function with S = 3,
g = 2.04).

Fig. 33. Magnetization versus field data for
[Cu3Fe(L3)4(NO3)]2(ClO4)4(NO3)4 (24).
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Complex 25 (Fig. 9) has an unusual rectangular structure with both alkoxide
and diazine bridges. The alkoxide bridges connect adjacent pairs of copper centers
orthogonally, while the diazine groups bridge equatorially. The χ (mol)/T profile
shows a maximum at 150 K, and a fit of the data to Eq. (3) (Si = 1/2) gives an
excellent fit with g = 2.18(1), J1 = −168(1) cm−1, J2 = 0 cm−1, ρ = 0.029, TIP =
0.000240 cm3 mol−1 (102 R = 0.29). The strong anti-ferromagnetic component is
clearly associated with the almost trans N–N bridges [38–40], while J2 = 0 cm−1 is
in complete agreement with the orthogonal alkoxide bridges. χT for 26 (Fig. 10) is
almost constant in the range 6.5–280 K indicating no significant interaction between
the copper(II) centers. Cu–N–N–Cu torsion angles of 97◦ are consistent with this
behavior, but somewhat larger than anticipated for orthogonal overlap of the copper
magnetic orbitals via the N–N single bond connection [38–40].

Magnetic data for 27 and 28 (Figs. 11 and 12) indicate intramolecular antiferro-
magnetic coupling within the square grids, with J ≈ −170 and −63.5 cm−1 respec-
tively. The orthogonality between Cu(1) and Cu(2) in 27 suggests that a dimer model
is more appropriate with Cu(1) and Cu(1)′ bridged by two pyrazole groups. In 28 all
four copper centers are linked equatorially with a single pyrazole bridge. 29 (Fig. 13)
has a clearly defined square arrangement of four copper centers bridged by single
imidazolate linkages. Variable temperature magnetic data are interpreted with a
square model (Eq. 3; Si = 1/2; J = J1 = J2) to give g = 2.062(4), J = −97.6 cm−1.
These results are consistent with previous studies involving pyrazole and imidazole
bridged complexes [38, 41, 42].

Complex 30 (Fig. 14) has a square arrangement of four copper ions bridged equa-
torially by single N–O linkages. Variable temperature magnetic data indicated strong
antiferromagnetic coupling, and a data fit to Eq. (3) (Si = 1/2; J = J1 = J2) gave
g = 2.15(3), J = −349(5) cm−1, consistent with related aldoxime bridged dicop-
per(II) complexes [43]. Complex 31 (Fig. 15) has four octahedral Ni(II) centers
bridged directly by a bifurcated bridge involving two four bond pathways (Ni–N–
C–N–Ni and Ni–N–C–O–Ni). The grid is slightly distorted (Ni–Ni–Ni–Ni torsional
angle 34.8◦, with long Ni–Ni distances (5.567 Å), but exhibits a crystallographically
imposed S4 symmetry axis. Variable temperature magnetic data have been inter-
preted according to Eq. (3) (Si = 1; J = J1 = J2) to give g = 2.24, J ≈ 0.75 K,
with inclusion of a uniaxial zero field splitting term |D| = 3 K [15]. Given the long
distance between the Ni centers the positive J value, indicating ferromagnetic cou-
pling, is quite surprising. Complex 32 (Fig. 16) involves pyrimidine bridges between
Co(II) centers, creating even larger Co–Co separations (6.4–6.6 Å). The magnetic
properties of a related, and structurally similar complex [Co(L10)]4(PF6)8 (L10; R1
= H, R2 = Me) [44] are interpreted in terms of a quantum spin system of four anti-
ferromagnetically coupled high spin Co(II) centers with effective spin Si = 1/2. This
is confirmed by magnetization studies at 2 K as a function of field. The quantitative
analysis of the magnetic properties is impeded in this case by the orbital contribution
of the high spin Co(II) ions to the magnetism. The effective exchange integral was
estimated to be J ′ ≈ −13.5 K, corresponding to a microscopic exchange coupling
of J ≈ −1.5 K. The magnetism of the isomorphic [Ni(L10)]4(PF6)8 complex has
been carefully examined by variable temperature magnetic measurements on sin-
gle crystals [45]. The data have been analyzed with Eq. (3) (Si = 1; J = J1 = J2),
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expanded by uniaxial zero field splitting terms and anisotropic g-factors (g = 2.10,
g = 2.02, J = −4.2 K, D = −8.0 K). Strong evidence for a sizeable biquadratic
exchange contribution (J ′ = 0.5 K) has also been found.

The related iso-structural iron(II) complex 33 is an example of an unusual
spin-crossover grid system. Room temperature magnetization data at 1 T sug-
gest three HS Fe(II) ions and one LS Fe(II) ion. χT values drop gradually from
2.5 cm3 K mol−1 at 300 K to 1.4 cm3 K mol−1 at 30 K, followed by a further drop
towards 4.2 K attributable to zero-field splitting. The gradual decrease in χT on
lowering the temperature is interpreted in terms of a “practically non-cooperative
spin crossover situation”, with a residual HS fraction at low temperature. At 4.2 K
both HS and LS Fe(II) forms are confirmed by Mössbauer spectroscopy, with a
population of 46% and 54% respectively. At 300 K the HS state has a population
of 80% [17].

Complex 34 (Fig. 17) involves five bond pathways between Ni(II) centers, and
not surprisingly exchange coupling is essentially non-existent [18]. 35 (Fig. 18) has
a similar five bond pyrazine bridging connection between Cu(II) centers, and good
fitting of the variable temperature magnetic data to Eq. (3) (Si = 1/2) gave g = 2.09,
J1 = −2.5 cm−1, J2 = −0.2 cm−1 [19]. Given the long copper–copper distances and
the effective “dimer of dimers” magnetic structure in 35 this result is very reasonable.
36 has a similar structure and magnetic data are interpreted in terms of ZFS effects
only, with insignificant intra-molecular spin exchange [20].

37 (Fig. 19) involves a similar sized asymmetric grid to 34–36, with five bond
bridges between Fe(II) centers. µ (mol) drops slightly from 11.5 µB at 300 K to
11.0 µB at 30 K, and then drops precipitously to 6.1 µB at 2 K. These data are con-
sistent with HS Fe(II) and insignificant exchange coupling, with the low temperature
drop in µB associated with zero-field splitting [21]. Complex 38 (Figs. 20 and 21)
is a novel expanded square grid with a ring of eight Ni(II) centers linked by trans
N–N bond bridges [22]. µ (mol) shows a dramatic drop from 8.2 µB at room tem-
perature to 2 µB at 2 K, indicative of substantial intra-molecular anti-ferromagnetic
exchange (Fig. 34). The data were fitted, as described earlier [33], to an isotropic
exchange expression based on an exchange Hamiltonian (Eq. 6) that assumes a ring

Fig. 34. Magnetic data (Ìmol versus temper-
ature) for [Ni8(L15)4(H2O)8](BF4)8.16H2O
(38) (see text for fitted parameters).
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of eight Ni(II) centers connected by equivalent bridging groups.

Hex = −J
{

S1 · S2 + S2 · S3 + S3 · S4 + S4 · S5

+ S5 · S6 + S6 · S7 + S7 · S8 + S1 · S8
}

(6)

A good data fit to adapted Eq. (3) gave g = 2.250(5), J = −15.0(4) cm−1,
TIP = 0.00150 cm3 mol−1. The moderately strong anti-ferromagnetic exchange is
associated with the almost trans bridging arrangement of the Ni(II) centers around
the N–N single bonds, in complete agreement with earlier studies [38–40]. The solid
line in Fig. 34 is calculated with these parameters.

Complex 39 (Figs. 22 and 23) corresponds to a fusion of four square subunits like
22, and as such would be expected to display similar magnetic properties. Figure 35
shows a pronounced drop in magnetic moment (per mole) from 16.9 µB at 300 K
to 5.0 µB at 1.8 K, clearly indicating the presence of nine HS Mn(II) centers expe-
riencing intra-molecular anti-ferromagnetic exchange. The low temperature value
suggests an S = 5/2 ground state with a sizeable magnetic anisotropy due to zero
field splitting This is corroborated by field dependent studies at 1.8 K (Fig. 36; solid
line calculated from the appropriate Brillouin function with g = 2, S = 5/2). The in-
crease of magnetic moment at higher fields reflects the presence of low-lying excited
states. Quantifying the exchange integral using Eq. (4) has proved to be difficult
since, even if all symmetries of Eq. (4) are exploited [32, 46], the dimension of the
largest matrix to be solved is still as large as 22 210 [47]. This exceeds by far the
capacity of today’s PCs. However, the somewhat simpler system of a ring of eight
Si = 5/2 ions has been solved recently [46]. These results could be used to calcu-
late the susceptibility of Eq. (4) in the limit |J1| > |J2|. With J1 = −3.8 cm−1 a
reasonable fit could be obtained (Fig. 35; g = 2.0). This value is comparable with
that observed for the square [2 × 2] analog 22 (J = −2.85 cm−1) [10b].

Fig. 35. Magnetic data (Ìmol versus temperature) for [Mn9(L16)6](ClO4)6 · 18H2O (39) (see
text for fitted parameters).
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Fig. 36. Magnetization versus field data for [Mn9(L16)6](ClO4)6 · 18H2O (39) at 1.8 K.

Complex 40 has an analogous structure (Fig. 24 illustrates the core), with a sim-
ilar disposition of the copper(II) magnetic orbitals to those found in related Cu4
square grids [10, 25]. In the outer ring the eight copper centers are linked with al-
ternating axial/equatorial connections between the copper dx2−y2 orbitals leading
to a situation of strict magnetic orbital orthogonality. Cu(5) has an unusual tetrag-
onally compressed six-coordinate geometry, and nominally a dz2 ground state. This
suggests orthogonality between Cu(5) and its neighbors as well. The profile of mag-
netic moment per mole as a function of temperature (Fig. 37) shows a drop from
6.4 µB at 300 K to 5.5 µB at 25 K, followed by a sharp rise to 6.9 µB at 2 K, indicating
the presence of fairly strong anti-ferromagnetic exchange, but also ferromagnetic
exchange as well. The data were fitted to Eq. (4) to give g = 2.30, J1 = 0.52 cm−1,

Fig. 37. Magnetic data (Ìmol versus temperature) for [Cu9(L16)6](NO3)12 · 9H2O (40)
(see text for fitted parameters).
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Fig. 38. Magnetization versus field data for [Cu9(L16)6](NO3)12 · 9H2O (40) at 2 K.

J2 = −24.3 cm−1 [48]. The solid line in Fig. 37 is calculated with these parameters.
Since J1 (ferromagnetic) dominates at low temperature this leads to an effective
S = 7/2 low temperature ground state [48], in agreement with magnetization versus
field data at 2 K (Fig. 38). The dominant exchange term is between Cu(5) and its
neighbors, and combined with the nominal S4 molecular symmetry, it reveals what
can only be described as a fluxional ground state for Cu(5). While Cu(5) appears
to have a dz2 ground state according to the structure it must undergo a dynamic
Jahn–Teller distortion effect, where in its relationship with one equivalent neigh-
boring copper center it appears to be dx2−y2 , and is anti-ferromagnetically coupled
(J2 = −24.3 cm−1). A detailed study of the magnetic anisotropy has provided fur-
ther strong evidence for a complicated ground state of the CuII) ions [48]. The
thermodynamic spectroscopy of the ground state, obtained by means of high-field
torque magnetometry, gave a g-factor anisotropy of �g ≡ g‖−g⊥ = −0.14(2) [48]. If
the Cu(II) ions assume pure dx2−y2 or dz2 ground states as suggested by the structure,
one would expect �g > 0 in striking contrast to the experimental finding. The zero
field splitting factor was also determined to be D = 0.009(1) K. Since the dipole–
dipole interaction between the nine Cu(II) ions contributes only Ddip = 0.012 K
to this splitting, the presence of an anisotropic exchange interaction must be as-
sumed, adding an additional splitting of Dex = −0.003(1) K. Because |J1| � |J2|
one expects that only the couplings involving Cu(5) contribute to the anisotropic
exchange, with a strength which could be estimated to be J aniso = 0.11(3) K, in
satisfying agreement with theoretical expectation [48].

Complex 41 (Fig. 25) has an orthogonally bridged expanded [2×2] grid structure
in the shape of a “pin-wheel” of eight Cu(II) centers, with two isolated Gd(III) ions
and 1.3 Cu(II) ions in the lattice structure, according to the X-ray structural analysis.
Magnetic moments (per mole) rise with decreasing temperature from 13.1 µB at
300 K to 14.5 µB at 2 K (Fig. 39), exceeding the spin only value sum associated with
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Fig. 39. Magnetic data (Ìmol versus temperature) for
[Cu8(L16)4(CH3OH)4(CH3CN)4][Gd(NO3)4(H2O)2]2(NO3)6 · 1.3Cu(NO3)2 · 10H2O (41)
(see text for fitted parameters).

Fig. 40. Magnetic model for “pin-wheel” cluster.

two isolated Gd(III) centers and 9.3 isolated Cu(II) centers. This suggests intra-
molecular ferromagnetic behavior within the cluster. The magnetic data were fitted
to an isotropic exchange expression based on the Hamiltonian (Eq. 7) for a “pin-
wheel” arrangement of eight copper centers (Fig. 40), with terms to include two
Curie-like Gd(III) centers, and 1.3 isolated Curie-like Cu(II) centers.

Hex = −J
{

S1 · S2 + S2 · S3 + S3 · S4 + S4 · S1

+ S1 · S5 + S2 · S6 + S3 · S7 + S4 · S8
}

(7)

A good data fit was obtained with gav. = 2.113(2), J = 5.0(2) cm−1, TIP =
0.000500 cm3 mol−1, θ = −0.10 K, (102 R = 1.0). The solid line in Fig. 39 was calcu-
lated with these parameters. Magnetization versus field data at 2 K show that at 5 T
the system approaches an S = 23/2 ground state, in agreement with the total spin
situation. The dominant intramolecular ferromagnetic exchange is consistent with
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previous Cu4 and Cu9 square grids with orthogonally arranged Cu(II) centers, and
highlights the fact that systems of this sort are important models for higher order
ferromagnetic grids.

5.3.4 Potential Applications of Magnetic Grids to Nanoscale Technology

It has been demonstrated that self-assembly procedures can produce ordered grid-
like arrays of paramagnetic transition metal ions in close proximity, with magnetic
interactions between the spin centers, and in some cases ferromagnetic behavior.
Fabricating devices such that individual magnetic subunits can be addressed is a chal-
lenge, but could be approached in a number of ways; e. g. chemical incorporation
into polymeric substrates, dispersion within a polymer matrix, surface deposition
etc. It has recently been demonstrated that grids of type 10, (e. g. [Co4(L10)4](PF6)8
(R1 = H, R2 = Me) can be deposited from solution in highly ordered monolayers on
a pyrolytic graphite surface, and addressed using STM techniques [49], which is a
clear indication of the potential in this area. Single grid cations could be addressed
and extracted with a −0.5 V pulse at the STM probe. Monolayer deposition of such
systems using vacuum technology has not been tried, but recent MALDI–TOF ex-
periments with 39 and 40 indicate prominent molecular species corresponding to
the molecular cations, indicative of the high gas phase stability of grids of this sort
[50].

The successful use of magnetic grids will depend on many factors, in particular
their ability to retain data bits of information once addressed and perturbed at room
temperature. We are perhaps a long way from this goal, but the new physics that this
type of system may present is as yet largely unexplored, and intensive activity will
doubtless follow to e. g. increase grid dimensions by expanding the polytopic nature
of the ligands, link magnetic grids together into chains and interlocked 2D and 3D
arrays, add redox probes to the magnetic grids such that magnetic properties can be
turned on and off by external electrochemical perturbations etc. These possibilities
present exciting opportunities to address e. g. the failure of Moore’s law, the ther-
mal erasure problems with current magnetic data storage media, and the apparent
insatiable desire of computer consumers to have faster and larger machines.
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6 Biogenic Magnets

Richard B. Frankel and Bruce M. Moskowitz

6.1 Introduction

Biogenic iron minerals are formed by many organisms for a number of physiological
functions [1, 2], form as a result of bacterial metabolic activities such as Fe(II)-
oxidation or Fe(III)-respiration [3], or deposit on bacterial surfaces [4]. The most
widely occurring biogenic iron minerals are amorphous or quasi-crystalline ferric
oxyhydroxides, related to the mineral ferrihydrite (Fe2O3 · 9H2O). Some organisms
form more crystalline minerals such as lepidocrocite (γ -FeOOH) and goethite (α-
FeOOH) [5]. These minerals are all weakly magnetic at ambient temperature and
while their magnetic properties have been exploited in certain medical diagnostic
and imaging technologies, their magnetism has no known physiological function.

Other important biogenic iron minerals are the structurally isomorphous, inverse
spinel ferrimagnets magnetite (Fe3O4) and greigite (Fe3S4). Magnetite occurs in a
number of organisms including vertebrates [6], invertebrates [5], and bacteria [2]
while greigite occurs in bacteria [7–9] and is reportedly associated with some plants
[10]. Bacteria mineralize nanocrystalline magnetic iron minerals either directly by
processes known as biologically controlled mineralization (BCM) or indirectly by
processes known as biologically-induced mineralization (BIM) [11]. Examples of
BCM and BIM of magnetic iron minerals are afforded by magnetotactic bacteria
[12, 13] and dissimilatory iron-reducing bacteria [3, 14], respectively.

While all the physiological functions of magnetite and greigite in all organisms are
not completely known, in some organisms magnetism per se is thought to play a role
in behavioral responses to the direction and/or intensity of the geomagnetic field
[15–18]. This role places certain restraints on the structure of the iron mineral grains
and their spatial organization. The most studied connection between structure, or-
ganization, magnetic properties and function of magnetic iron minerals is in the
magnetotactic bacteria [19]. These organisms will be the primary focus of this review.

6.1.1 Magnetotactic Bacteria

The ability of some motile, aquatic bacteria to orient and migrate along magnetic
field lines is known as magnetotaxis [19]. Killed cells orient but do not migrate along
the field lines, indicating that each cell has a permanent magnetic dipole that is
oriented by the torque exerted by the local magnetic field. Cellular motility results
in migration along the magnetic field lines [20]. Thus magnetotactic bacteria are
essentially self-propelled magnetic dipoles.

Magnetism: Molecules to Materials IV. Edited by Joel S. Miller and Marc Drillon
Copyright c© 2002 Wiley-VCH Verlag GmbH & Co. KGaA
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Magnetotactic bacteria are indigenous in chemically stratified water columns or
sediments where they occur predominantly at the microaerobic and the anoxic re-
gions of the habitat or both [21]. The diversity of magnetotactic bacteria is reflected
by the large number of different morphotypes found in environmental samples of
water or sediment as well as by the phylogenetic analysis of cultured and uncul-
tured magnetotactic bacteria [22]. Commonly observed morphotypes include coc-
coid to ovoid cells, rods, vibrios and spirilla of various dimensions and an apparently
multicellular bacterium referred to as the many-celled magnetotactic prokaryote
(MMP) [23]. All magnetotactic bacteria are motile by means of flagella and have
a cell wall structure characteristic of Gram-negative bacteria. The arrangement of
flagella varies between species/strains and can be either polar, bipolar, or in tufts.

6.1.2 Magnetosomes

All magnetotactic bacteria contain magnetosomes [24], intracellular structures that
are responsible for the cellular magnetic dipole and magnetotaxis. The magneto-
somes comprise magnetite or greigite crystals enveloped by phospholipid mem-
branes [25, 26]. The magnetosome membrane is presumably a structural entity that
is the locus of biological control over the nucleation and growth of the mineral
crystal. Each magnetotactic species or strain exclusively produces either magnetite
or greigite magnetosomes, except for one marine organism that produces magneto-
somes of both kinds [21]. With few exceptions, the magnetosome crystals are of order
35 to 120 nm in length [27], which is within the permanent single-magnetic-domain
(SD) size range for both minerals (Section 6.2.2). In the majority of magnetotactic
bacteria, the magnetosomes are organized in one or more straight chains of var-
ious lengths parallel to the long axis of the cell (Fig. 1). There is evidence from
Mössbauer spectroscopy of whole cells that the magnetosome chain is fixed within

Fig. 1. Transmission electron micrograph of Magnetospirillum magnetotacticum showing the
chain of magnetosomes inside the cell. The magnetite crystals incorporated in the magne-
tosomes have cuboctahedral morphology and are ca. 42 nm long. The magnetosome chain
is fixed in the cell and the interaction between the magnetic dipole moment associated with
the chain and the local magnetic field causes the cell to be oriented along magnetic field
lines. Rotation of the cellular flagella (not shown) causes the cell to migrate along the field
lines. Bar equals 1 micron.
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the cell [28], presumably by the magnetosome membrane. Dispersed aggregates or
clusters of magnetosomes occur in some magnetotactic bacteria, usually at one side
of the cell, which often corresponds to the site of flagellar insertion [29].

6.1.3 Magnetite Magnetosomes

Magnetite and other cubic spinel minerals are described in the Fd3m space group.
Macroscopic crystals display octahedral {111}, more rarely dodecahedral {110} or
cubic {100} habits. High resolution transmission electron microscopy and selected
area electron diffraction have revealed that the magnetite grains within magneto-
somes are single crystals of relatively high structural perfection [27, 30]. A strik-
ing feature of magnetosome magnetite crystals is that different bacterial species or
strains can have different projected shapes when observed by transmission electron
microscopy [12, 13, 27] (Fig. 2). In addition to roughly equidimensional shapes, sev-
eral non-equidimensional shapes have been described [31, 32]; these include pseudo-
prismatic and tooth-, bullet-, or arrowhead shapes [27, 32, 33], although some vari-
ations of shape and size can occur within single magnetosome chains [32]. Idealized
habits of magnetosome magnetite crystals in a number of magnetotactic bacteria
have been inferred from 2D high resolution lattice images, assuming low index faces
[31, 34–37] (Fig. 3). In magnetotactic spirilla, such as Magnetospirillum magneto-
tacticum, the idealized crystal habits are equidimensional cuboctahedra comprising
{100} and {111} forms [38]. In a number of other magnetotactic bacterial morpho-
types, including cocci and vibrios, the crystals are elongated along a [111] axis parallel
to the magnetosome chain direction and the projected shapes are pseudo-prismatic.
The idealized habits for the latter crystals comprise {100}, {111}, and {110} forms
with a total of 26 possible faces. The elongation along [111] breaks the symmetry
between the twelve {110} faces into two groups of six symmetry-related faces, and
between the eight possible {111} faces into two groups of two and six faces. The six

Fig. 2. Electron micrographs of magnetosome magnetite crystals in two cultured magne-
totactic bacteria. (a) Cuboctahedral crystals in Magnetospirillum magnetotacticum (Fig. 1).
Small arrows indicate twinned crystals and large arrows indicate clusters of small crystals.
(b) Elongated crystals in magnetotactic bacterium strain MV-1. There are two cells, each
with one chain of magnetosomes.
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Fig. 3. Idealized crystal habits comprising {100}, {111} and {110} forms inferred from high
resolution transmission electron microscopy of several different strains of magnetotactic
bacteria.

{100} faces remain symmetrically related. The result is a pseudo prism in which the
[111] axis of elongation is a threefold axis of symmetry. Six {110} faces, parallel to
[111], form the body of the prism and two {111} faces perpendicular to [111] the
end-caps [31]. The remaining six {100}, six {111} and six {110} planes form corner
faces at the intersections between the body {110} and end-cap {111} faces. The over-
all size of the crystals, the width to length ratio, and the relative sizes of the corner
faces of different form can vary from one bacterial species or strain to another,
resulting in the distinctive projected shapes.

Statistical analysis of magnetosome magnetite crystals show narrow, asymmet-
ric, size distributions and consistent W/L ratios within individual species, whereas
synthetic magnetite crystals and BIM magnetite of similar mean size are distinc-
tively different and have a lognormal size distribution that extends to relatively
large crystals [27, 39].

6.1.4 Greigite Magnetosomes

Whereas all freshwater, magnetotactic bacteria have been found to contain mag-
netite magnetosomes, many marine, estuarine, and salt marsh species produce iron
sulfide magnetosomes [7, 40] consisting primarily of the magnetic iron sulfide, greig-
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ite. While none of the bacteria with greigite magnetosomes are available in pure
culture, recognized greigite-producing magnetotactic bacteria includes the MMP
and a variety of relatively large, rod-shaped bacteria. Like magnetite crystals in
magnetosomes, the morphologies of the greigite crystals also appear to be species-
and/or strain-specific [41].

The structures and compositions of intracellular Fe sulfides produced by mag-
netotactic bacteria have been studied by transmission electron microscopy [8, 9].
Greigite is common in all magnetotactic bacteria with iron sulfide magnetosomes. In
addition, mackinawite (tetragonal FeS) and, tentatively, sphalerite-type cubic FeS
were identified. Mackinawite converts to greigite over time. Orientation relation-
ships between the two minerals indicate that the cubic close-packed S substructure
remains unchanged during the transformation; only the Fe atoms rearrange. Planar
defects typically occur along the close-packed layers of greigite crystals. Such defects
are probably remnants of precursor structures and could indicate that all greigite
crystals formed by solid-state transformation from mackinawite or cubic FeS. Nei-
ther mackinawite nor cubic FeS are magnetic; yet they are aligned in chains such
that when converted to greigite, [100], probably the easy axis of magnetization in
greigite, is parallel to the chain direction. It is perhaps kinetically easier for the
bacterium to grow mackinawite or cubic FeS first; these then convert to greigite. A
similar process occurs abiotically in sulfidic marine sediments, with greigite even-
tually converting to non-magnetic pyrite.

6.2 Magnetic Properties of Magnetosomes

The following sections summarize the physical principles that underlie the perma-
nent cellular dipole in magnetotactic bacteria, including the roles of grain size, crys-
tallographic orientation and organization of magnetosomes in chains. This will be
followed by experimental studies of magnetosomes and the mechanism and func-
tion of magnetotaxis (Section 6.3). Some bulk physical and magnetic properties of
magnetite and greigite are presented in Table 1.

6.2.1 Magnetic Microstates and Crystal Size

Ferrimagnetic materials are composed of small regions of uniform magnetization,
magnetic domains, separated by domain walls, narrow transition regions of rapidly
varying spin orientation. Domains are small in size (one to hundreds of microm-
eters), but much larger than atomic distances. The width of domain walls is typi-
cally 10 to 500 nm depending on the magnetic exchange and anisotropy energies
of the material. The main driving force for domain formation is the minimization
of magnetostatic energy through various types of flux closure configurations. In a
uniformly magnetized grain (Fig. 4), uncompensated magnetic poles will form on
the surfaces due to the magnetization (Ms) and is a potent source of magnetostatic
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Table 1. Some magnetic and physical properties for magnetite and greigite [42].

Property Fe3O4 Fe3S4

Crystal type Cubic (Fd3m), T > 125 K Cubic (Fd3m)
Monoclinic, T < 125 K

Lattice parameter (300 K) 0.8396 nm 0.9881 nm
Density 5197 kg m−3 4097 kg m−3

Magnetic ordering Ferrimagnetic Ferrimagnetic
Ms (300 K) 480 kA m−1 80–125 kA m−1

Magnetic moment per formula unit (0 K) 4.1 ÌB 2.2 ÌB
Curie temperature 853 K ∼603 K
Magnetic easy axis 〈111〉, T > 131 K 〈100〉

〈100〉, 125 K < T < 131 K
c-axis, T < 125 K

K1 (300 K) −1.35 × 104 J m−3 N/A
Crystallographic transition T = 125 K None
Magnetic isotropic point T = 131 K None

Notes: There is uncertainty in the value of the Curie temperature for greigite because its
thermal decomposition temperature (starting around 573 K) is below the Curie temperature;
Ms = saturation magnetization; ÌB = Bohr magneton, K1 = magnetocrystalline anisotropy
constant.

Fig. 4. Idealized domain states showing (A) uniform single domain state, (B) two and (C)
three domain states with domain walls separating oppositely magnetized domains, (D) flower
state, and (E) vortex state. The flower and vortex states are spin configurations predicted from
three-dimensional micromagnetics models. The arrows show the direction of magnetization
and dark and light shading on top surfaces indicate surface N or S poles. The flower state
is an SD state but with lower energy than (A) due to the fanning out of the magnetization
near the cube corners. The vortex state replaces the flower state above the SD limit and
has lower energy than (B) due to the closed-flux configurations in three dimensions.
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energy. Spin configurations that tend to form flux closure on surfaces or within the
volume of the grain are preferred. The magnetostatic energy is long-ranged and
also anisotropic due to the shape of the grain and leads to a grain-size dependence
of microstates. Domains and domain walls in magnetite can be directly observed
using various magnetic imaging techniques [43, 44].

6.2.2 Single-domain (SD) and Multi-domain (MD) States

A SD grain is uniformly magnetized with Ms along an easy axis, thus minimizing ex-
change and anisotropy energies (Fig. 4A). However, depending on the grain volume,
the magnetostatic energy of this configuration may not be minimal. The magneto-
static energy can be reduced if the grain divides into two domains each magnetized
with Ms in opposite directions (Fig. 4B), thus reducing the remanent moment of the
grain. This subdivision into more and more domains (Fig. 4C) cannot continue in-
definitely because the domain walls separating domains require additional exchange
and magnetocrystalline energy to be produced. Eventually, an equilibrium number
of domains will be reached which reflects the balance between the decrease in mag-
netostatic energy and the increase in wall energy. for a given grain size. Therefore,
unlike SD grains, a multidomain (MD) grain is not uniformly magnetized. Inside
each domain, the magnetization Mi = Ms but the direction of Mi varies between
different domains resulting in the grain as a whole having a small net remanence
�Mi � Ms. On average, as the grain size increases, the number of domains also
increases.

6.2.3 Superparamagnetic (SPM) State

The SD state is not the only important microstate for biogenic magnetic minerals.
As grain size continues to decrease within the SD range, another critical threshold
is reached, at which Mr (remanent magnetization) and Hc (coercive force) go to
zero. When this happens, the grain becomes superparamagnetic (SPM). For mag-
netite, the SPM transition size at room temperature is about 30 nm [42]. In SPM
grains, the magnetization, although uniform, is not constant in direction. Thermal
energy causes spontaneous transitions of the magnetization over anisotropy barri-
ers between energetically equivalent easy axis directions in the grain resulting in a
time-average remanent moment of zero; thus, SPM grains do not exhibit remanence.

An SPM grain with volume V will approach an equilibrium value of magnetiza-
tion in zero field with a characteristic relaxation time given by:

1/τ = f0 exp(K V/kT ) (1)

where f0 is the frequency factor (∼ 109 s−1; [45]), K V is the anisotropy energy, and
T is absolute temperature. Because of the exponential dependence of the relaxation
time on V and T , grains display sharp blocking transitions between stable SD with
long relaxation times (τ � measurement time), and magnetically unstable SPM
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with very short relaxation times (τ � measurement time). At a particular temper-
ature (the blocking temperature), the measurement time equals the relaxation time
(τ ) and the grains become superparamagnetic and no longer carry remanence. At
sufficiently low temperature, SPM grains block and exhibit stable SD behavior. The
relaxation behavior of SPM grains as a function of temperature can be used to detect
the presence of these particularly small grains (<30 nm) in biological and geological
samples by measuring the temperature dependence of magnetic remanence (Fig. 5)
or using variable temperature Mössbauer spectroscopy [45–47].

Fig. 5. Normalized (a) thermal
demagnetization of satura-
tion remanent magnetization
and (b) magnetic initial AC
susceptibility for two types
of biogenic magnetites. Mag-
netite from magnetotactic
bacteria (strain MV-1) shows
the characteristic magnetite
transition near 110 K, expected
for grain sizes greater than
30 nm. Magnetite produced
by Geobacter (GS-15) shows
typical superparamagnetic be-
havior expected for magnetite
grain sizes less than 30 nm.
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6.2.4 Theoretical Domain Calculations: Butler–Banerjee Model

As the MD grain size decreases, a critical size (d0) will be reached where the grain
can no longer accommodate a domain wall. Below this critical size, the single do-
main structure is the lowest energy microstate. The critical size for the SD state
depends on several parameters (Ms, magnetocrystalline anisotropy, exchange en-
ergy, grain shape). Theoretical estimates of size and shape ranges of single-domain,
two-domain (TD), and superparamagnetic states for magnetite at 290 K were cal-
culated by Butler and Banerjee [48] and are shown in Fig. 6. The model makes two
main predictions:
• for an equidimensional cube, the SD–TD threshold size is 76 nm; and
• with increasing grain elongation, d0 increases and becomes greater than 1000 nm

for an axial ratio (width/length) <0.2.

Fig. 6. Theoretical domain state diagram for magnetite showing the superparamagnetic
(SPM), single domain (SD), two domain (TD), and metastable single domain (MSD) sta-
bility ranges for parallelepiped-shaped grains. Cubic-shaped grains correspond to an axial
ratio of 1.0 and elongated grains have axial ratios (width/length) <1.0. The SPM–SD and
SD–TD curves are from Butler and Banerjee [48] and the MSD curve is from Fabian et
al. [50]. The symbols represent the size and shape distributions of magnetite grains from
magnetotactic bacteria and dissimilatory iron-reducing bacteria. Open circles: uncultured
magnetotactic bacteria from lake sediments from Germany [33, 51]; crosses: uncultured
magnetotactic bacteria from marine, brackish and freshwater environments in an around
Moreton Bay, Australia [30]; solid diamonds: cultured strains of magnetotactic bacteria (M.
magnetotacticum, MV-1, MV-2, MV-4, MC-1); solid square: Itaipu-1 magnetosome; solid cir-
cle: Itaipu-3 magnetosome (both Itaipu-1 and -3 are from uncultured magnetotactic bacteria
from Brazil [52–54]; solid inverted triangle: extracellular magnetite from Geobacter (GS-15
[3, 47]). (After Bazylinski and Moskowitz, 1997 [55]).
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Because of shape anisotropy, the SD threshold increases with decreasing axial
ratio for non-equidimensional grains. A similar calculation has also been carried out
for the SD–TD transition size for greigite and shows that greigite magnetosomes
fall within the predicted SD stability field [49]. However, many of the magnetic
parameters for greigite needed for the domain calculations are poorly known.

Experimental confirmation for these numerical predictions are difficult because
the predicted SD threshold size in magnetite and greigite are below 1000 nm and
direct domain observations are limited at this length scale. Instead of domain obser-
vations, remanence and coercivity data obtained from sized dispersions of natural
and synthetic magnetites that span the predicted SD threshold are used to infer the
actual SD size range. Results from these types of experiments are generally consis-
tent with the theoretical predictions that the critical threshold size for SD behavior
is <1000 nm [42, 56].

Originally, the Butler–Banerjee calculations were used to confirm that magneto-
somes were indeed uniformly magnetized, SD grains [57, 58, 59], as would be re-
quired for optimizing magnetotaxis in the geomagnetic field. Almost all magnetite
magnetosomes from both cultured and uncultured bacteria that have been charac-
terized by TEM fall within the theoretical SD size range (Fig. 6). Because there are
biological arguments for magnetosomes to be SD as well as independent experi-
mental evidence for the SD nature of magnetosomes from magnetic measurements
on bulk samples of freeze-dried cells [60] and on individual cells [61, 62], the best
evidence for the general validity of the Butler–Banerjee model in fact comes from
the size and shape distributions of magnetosomes found in magnetotactic bacteria.

6.2.5 Local Energy Minima and Metastable SD States:
Micromagnetic Models

One significant shortcoming with the Butler–Banerjee model is that it is a one-
dimensional model constrained by the assumptions that the magnetization is uni-
form within domain walls and that the SD state transforms into a simple two-domain
(TD) state with a planar wall separating the domains (Fig. 4A, B). In fact the sim-
ple TD state may not be lowest energy ground state configuration for grains sizes
larger than SD. More recent micromagnetic calculations in three dimensions remove
many of the constraints necessitated by earlier modeling techniques and allow other
spin configurations with more efficient magnetostatic energy minimization to form
[42]. These micromagnetic calculations predict that a variety of other microstates
(flower and vortex states, Fig. 4D, E) with lower energy configurations than the
simple uniform SD and TD states can develop in cubic grains with low anisotropy
such as magnetite [50, 63]. Furthermore, these alternative microstates can be lo-
cal energy minima (LEM) rather than global energy minima or ground states. This
means that grains can be trapped in higher energy LEM states until perturbed by
magnetic fields which subsequently initiate the transformation to a lower energy
state. An important LEM state is the metastable SD state, in which the nearly uni-
formly magnetized SD state (flower state) metastably persists in larger sized grains
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whose ground state configurations are predicted to be a non-SD vortex configu-
ration. Metastable SD states and alternative LEM states for the same grain have
a been experimentally observed in magnetite, titanomagnetite, and pyrrhotite for
grain sizes >1000 nm, well above their equilibrium values for d0 (a recent review
is available elsewhere [42]).

While three-dimensional micromagnetic calculations have predicted a variety
of non-SD structures forming just above the SD transition size, the equilibrium,
ground state transition size d0 does not change significantly from the original Butler–
Banerjee calculations. For an equidimensional cube of magnetite, d0 ≈ 80 nm. How-
ever, the fundamental new insight obtained from the micromagnetic models is the
existence of a metastable SD region that effectively extends the grain size range for
SD states (in this case the flower state). At the metastable SD boundary, the grain
will spontaneously transform into a non-SD state, either by nucleating a domain
wall or transforming into a vortex-like state. The metastable SD transition bound-
ary for magnetite as a function of axial ratio, obtained from a recent unconstrained
three-dimensional micromagnetic model [50], is shown in Fig. 6. For an equidimen-
sional cube of magnetite, a metastable SD state can exist in grain sizes up to 140 nm,
significantly higher than the ground state value of 80 nm. Application of a magnetic
field can transform the metastable SD state into lower energy vortex states.

In summary, although variations exist between species, almost all magnetite and
greigite magnetosomes fall within a narrow size range of about 35–120 nm when
measured along their long axes [27, 30, 32, 33, 41]. This size range is significant
because it places these grains within the stable magnetic single domain (SD) size
range for magnetite and greigite [42]. Grains within the SD size range are uni-
formly magnetized, which means their magnetic dipole moment is maximum, that
is, equal to the saturation moment Ms. Grains larger than about 100 to 120 nm are
non-uniformly magnetized because of the formation of multiple magnetic domains,
domain walls, or vortex configurations (Section 6.3.10); this has the effect of making
their magnetic moments significantly smaller than in SD grains. At the other ex-
treme, SD grains smaller than about 30 nm are superparamagnetic (SPM) at ambient
temperature. Although SPM grains are still uniformly magnetized, their moments
are not constant in direction because of thermally induced spontaneous reversals
which produce a time-averaged moment of zero. Therefore, magnetotactic bacteria
produce the optimum grain size for maximum moment per magnetosome. In con-
trast, BIM magnetite, greigite, and other magnetic iron sulfide minerals produced
extracellularly by dissimilatory iron-reducing bacteria are mostly in the superpara-
magnetic state at ambient temperatures [46, 64]. Crystal size distributions for BIM
and BCM magnetite grains are shown in Fig. 7.

6.2.6 Magnetic Anisotropy of Magnetosomes

In addition to crystal habit and size, the crystallographic orientation of each indi-
vidual magnetosome along a magnetosome chain is also determined in most mag-
netotactic bacteria. Magnetite magnetosomes are almost exclusively oriented with
a [111] crystallographic axis aligned along the magnetosome chain axis [31]. For
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Fig. 7. Crystal size distributions for magnetite grains produced by magnetotactic bacterium
strain MV-1 (BCM type) and Geobacter metallireducens GS-15 (BIM type) [27, 47]. The two
modes of biomineralization produces grains with two distinct magnetic microstates: single
domain (SD) and superparamagnetic (SPM).

elongated crystal morphologies, the [111] crystallographic axis aligned along the
chain is the elongation axis. In contrast, greigite magnetosomes are aligned with a
[100] crystallographic axis direction parallel to the chain axis [41]. The significance
of the [111] direction in magnetite is that it corresponds to the magnetic easy axis
(defined below). Similarly, the [100] direction is probably the magnetic easy axis in
greigite. No direct determination of easy axis orientation in greigite has yet been
made, primarily because of the difficulty of synthesizing high quality, large single
crystals of this mineral usually required for magnetic anisotropy measurements.

The magnetic easy (i. e., low energy) axes arise from anisotropy in the magne-
tocrystalline energy resulting from the interaction of spin magnetic moments with
the crystalline structure. This spin–orbit coupling determines the crystallographic di-
rections along which Ms prefers or avoids being directed. In magnetite above 120 K,
the {111} directions are the magnetic easy axes and the {100} directions are the hard
(i. e., high energy) axes. To reverse the magnetization by an applied field from one
easy axis to another requires rotation through a hard axis. The magnetocrystalline
anisotropy thus creates an energy barrier that pins Ms along one easy axis until a
large enough magnetic field is applied to cause an irreversible jump of Ms over the
anisotropy barrier. This field is related to the coercivity Hc and is a measure of the
stability of remanence against remagnetization by time, temperature or magnetic
fields. However, if a grain is elongated, it is shape anisotropy rather than magne-
tocrystalline anisotropy that inhibits remagnetization during a hysteresis cycle and
is another source of coercivity in materials with high Ms such as magnetite. Shape
anisotropy is primarily responsible for the coercivity observed in magnetosomes.



6.2 Magnetic Properties of Magnetosomes 217

6.2.7 Magnetosome Chains

The arrangement of the single-magnetic-domain magnetosomes in chains maximizes
the dipole moment of the cell because magnetic interactions between the magne-
tosomes cause each magnetosome moment to spontaneously orient parallel to the
others along the chain axis by minimizing the magnetostatic energy. Thus the to-
tal dipole moment of the chain, M, is the algebraic sum of the moments of the
individual magnetosomes in the chain. However this is true only because the mag-
netosomes are physically constrained by the magnetosome membranes in the chain
configuration. If free to float in the cytoplasm, magnetosomes would likely clump,
resulting in a smaller net dipole moment than in the chain. For organisms such as
Magnetospirillum magnetotacticum, the remanent moment is the maximum possible
moment of the chain.

6.2.8 Magnetic Properties of Magnetosomes at Ambient Temperatures

The SD nature of magnetosomes has been confirmed by various magnetic mea-
surements. A room temperature hysteresis loop for a bulk magnetotactic bacterial
sample is shown in Fig. 8. The sample exhibits classical SD behavior. The saturation
remanence to saturation magnetization ratio, Mr/Ms, is approximately 0.5, which is
the theoretical value for a randomly oriented assemblage of SD grains with uniaxial
anisotropy [42]. The chain structure effectively removes the equivalence among the
different {111} easy directions and produces a unique easy axis coinciding with the
particular [111] axis aligned along the chain axis.

Hysteresis measurements from a number of different cultured strains of mag-
netotactic bacteria yield coercivities (Hc) between 20–50 mT, which are larger than
the expected theoretical coercivity (∼11 mT) for randomly oriented SD magnetite
grains with magnetocrystalline easy axes along [111] directions [65]. This indicates
that the intrinsic magnetocrystalline anisotropy is not the main source of the coer-

Fig. 8. Magnetic hysteresis loop
for a sample consisting of freeze-
dried cells of magnetotactic bac-
terium (strain MV-1).
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civity but instead a combination of grain elongations along [111] (giving rise to shape
anisotropy) and their linear arrangements in chains (producing positive magneto-
static interaction between grains) controls the remagnetization process and pins the
magnetization along the chain direction. More significantly, the observed coerciv-
ities are much larger than the geomagnetic field (0.05 mT) and demonstrates that
changes in the geomagnetic field, even polarity reversals in the geologic past, are
not sufficient to remagnetize the polarity of the magnetosome chains. This has been
confirmed by magnetic measurements of individual magnetotactic bacteria with sin-
gle magnetosome chains which show square hysteresis loops with coercive forces of
the order of 30 mT [62] and on isolated magnetosomes arranged in chain segments
of up to 14 grains [66]. Additional results on room temperature remanence, hys-
teresis, and demagnetization behavior of whole cells and extracted magnetosomes
can be found elsewhere [46, 49, 60, 64, 67, 68].

6.2.9 Low-temperature (<300 K) Magnetic Properties

Moskowitz et al. have shown that low-temperature remanence measurements pro-
vide a method to identify and quantify magnetosome magnetite produced by mag-
netotactic bacteria in pure culture, bulk sediment, soil or water samples and ex-
traterrestrial materials [46, 64]. Remanence measurements can be 100–1000 times
more sensitive for the detection of minute amounts of magnetite in natural or bi-
ological samples than using other traditional techniques such as X-ray diffraction
or Mössbauer spectroscopy.

The magnetic behavior of magnetite below room temperature has been exten-
sively studied because it exhibits both a structural phase transition at T = 125 K,
called the Verwey transition (Tv), and a magnetic isotropic point (Ti) at T = 130 K
[42]. At the Verwey transition, stoichiometric magnetite undergoes a first-order crys-
tallographic transition, in which the lattice structure changes from an inverse cubic
spinel (T > Tv) to monoclinic (T < Tv) symmetry [69]. At the magnetic isotropic
point, which occurs at a temperature slightly above Tv, the first order cubic mag-
netocrystalline anisotropy constant (K1) becomes zero as it changes sign and the
easy directions of magnetization change their orientation from [111] above Ti to
[100] below Ti. Both critical transitions produce a distinctive magnetic signature in
remanence or magnetic susceptibility. For example, remanence given above or be-
low Tv or Ti will be partially demagnetized upon cycling through these transitions.
Likewise, magnetic susceptibility is a maximum at Ti, where the anisotropy energy is
a minimum, and drops sharply below Tv as the anisotropy of monoclinic magnetite
markedly increases. A typical example of low-temperature magnetic behavior for
magnetic produced by magnetotactic bacteria is shown in Fig. 5. This remanence
behavior provides a diagnostic signature for stoichiometric magnetite. Slight de-
viations from stoichiometry or minor amounts of cation substitution (e. g. Ti4+ or
Al3+), typical of naturally occurring, inorganic magnetites, can reduce the Verwey
transition below 100 K or suppress it entirely [70–72].

Unlike magnetite, greigite lacks low-temperature remanence transitions [73] and
therefore greigite magnetosomes should not display marked changes in remanence
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Fig. 9. Normalized thermal demagnetization of saturation remanent magnetization for fil-
tered water samples collected at Salt Pond (MA) in July 1997. The series of curves show a
magnetization profile through the oxic–anoxic transition zone (OATZ), where each individ-
ual curve represents a sample collected at a specific depth from the surface (noted on each
curve). The OATZ interface is approximately located at a depth of 3.5–3.6 m (insert). The
results above but near the OATZ indicate a strong magnetite contribution from magnetite
producing magnetotactic bacteria, whereas below the OATZ the data indicate a greater
contribution from greigite-producing magnetotactic bacteria.

or susceptibility below 300 K. Although no axenic cultures of greigite magnetosomes
are currently available, natural populations of greigite- and magnetite-producing
magnetotactic bacteria from aquatic habitats can be collected and studied. An ex-
ample of low-temperature measurements for samples collected from a coastal pond
at different water depths above and below the OATZ (3.5–3.6 m), where differ-
ent types of magnetotactic bacteria are dominant, is shown in Fig. 9. In samples
from 3.4–3.5 m depth, the magnetite transition is well developed and coincides with
the presence of high concentrations of magnetite-producing magnetotactic bacteria.
Upon passing through the OATZ into the anoxic zone, the amount of remanence
lost at the transition progressively decreases with water depth, indicating a greater
contribution from greigite producers in the anoxic zone.

Another useful feature of LT measurements is that they can be used to discrimi-
nate superparamagnetic (<30 nm) grains of iron oxides and iron sulfides from stable
single domain (ca. 30 to 100 nm) and larger multi-domain grains (>100 nm). In bio-
genic samples, the superparamagnetic behavior would be indicative of BIM mag-
netic grains produced by dissimilatory iron- and sulfate-reducing bacteria whereas
single domain behavior would be indicative of SD magnetosome grains produced
by magnetotactic bacteria [46, 64] as shown in Fig. 5. The shape of the SPM re-
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manence or susceptibility curves reflect the lognormal grain size distribution pro-
duced by BIM process and is typical of relaxation behavior in nanophase magnetic
materials. A lognormal grain size distribution produces a distribution of magnetic
blocking temperatures and results in the progressive unblocking of magnetization
as SD grains become SPM with increasing temperature.

6.2.10 Magnetosomes and Micromagnetism

While the dimensions of most magnetite magnetosomes place them within the the-
oretical SD size range, some appear to be much larger than SD and plot within
the theoretical TD size range. In some cases, the grain dimensions may be just an
experimental artifact resulting from the determination of three-dimensional shape
from a two-dimensional projection on a TEM photomicrograph. Other examples
are more unambiguous, such as the large magnetosomes found in coccoid cells from
Lagoa de Itaipu, near Rio de Janeiro [52, 53] and plotted in Fig. 6.

The existence of the metastable SD state provides a possible explanation for
the grain dimensions of the anomalously large magnetosomes [50, 74]. As initially
uniformly magnetized magnetosomes nucleate and grow in size from the SPM state
to the stable SD state and beyond, it may be energetically favorable for the grains to
retain a near uniform SD state (flower state) into the metastable SD range instead of
reverting to a non-SD state because the additional activation energy needed for the
transformation is not available. Magnetic interactions between magnetosomes along
a chain may also help to stabilize the SD structure [50]. If this speculation is true,
bacteria that make metastable SD magnetosomes can provide critical confirmation
of micro-magnetic models as well as provide a source of metastable SD magnetite
grains for study.

Using the results from three-dimensional micromagnetic models, the magneto-
somes in the coccoid cells from Brazil as well as large magnetosomes in other organ-
isms fall within the predicted metastable SD range and therefore can quite naturally
possess an SD structure. This hypothesis has recently been tested using the tech-
nique of off-axis electron holography in a transmission electron microscope. This
technique allows the visualization of magnetic structure and correlation with phys-
ical structure [75, 76] as discussed below.

6.2.11 Magnetosome Magnetization from Electron Holography

In off-axis electron holography, the sample is positioned in the transmission electron
microscope so that it covers approximately half the field of view and a charged
electrostatic biprism causes the electron wave that has passed through the specimen
to overlap with a reference wave that has only passed through vacuum. The resulting
hologram is an interference pattern in which amplitude information is contained in
the relative amplitude of the cosine-like fringes and information about the phase
shift of the electron wave is contained in the fringe positions. The holographic phase
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data can be decomposed into electrostatic and magnetic contributions and displayed
as thickness contours and magnetic field lines, respectively [76].

Superposition of contours of the magnetic contribution to the holographic phase
on the electrostatic contribution to the phase allows correlation of the magnetic
flux lines with the positions of the magnetosomes. Contours of spacing 0.064 ra-
dians are overlaid on the magnetosomes in Fig. 10 for a cell of the magnetotactic
bacterium Magnetospirillum magnetotacticum [75, 76]. The contours provide a semi-
quantitative map of the magnetic field in the sample; the direction of the field at each
point is tangential to the contour. All the magnetosomes in M. magnetotacticum are
single magnetic domains magnetized parallel to the axis of the magnetosome chain,
in confirmation of the discussion in Sections 6.2.4–6.2.7. For a magnetosome at the

Fig. 10. (Top): Mean inner potential contributions to the electron holographic phase in-
dicating the position of the magnetosomes in a cell of Magnetospirillum magnetotacticum.
(Bottom): Contours derived from the magnetic contribution to the electron holographic
phase overlaid onto positions of the magnetosomes. The contours provide a map of the lo-
cal magnetic field in the cell. The confinement of the magnetic flux within the magnetosomes
shows that all the magnetite crystals are single magnetic domains magnetized approximately
parallel to the axis of the chain.
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end of the chain, the contours “fan out” suggesting a flower state configuration as
predicted by micromagnetic models. At one point in the chain there is a “defect” in
which two small magnetosomes have mineralized in place of a larger one, resulting
in a slightly poorer, but detectable, confinement of the magnetic field at that point.
Smaller crystals at the right end of the chain are in the SPM size range, yet they
are also magnetized parallel to the chain axis, presumably by interactions with the
magnetic field of the larger crystals in the chain. Finally, the magnetic dipole mo-
ment of the magnetosome chain can be obtained from the magnetic contribution to
the phase, giving 5 × 10−16 Am2 (5 × 10−13 emu), which is consistent with the value
predicted for a chain of twenty-two 45 nm diameter spheres of magnetite, using the
bulk magnetization 480 kA m−1 (Table 1).

Similar measurements have been made with the large (up to 200 nm) magneto-
somes with roughly square projected shapes in uncultured bacteria (Itaipu-1) col-
lected at Itaipu, Brazil [52, 53]). The sample also contained bacteria with smaller,
more elongated magnetosomes (Itaipu-3). Preparation of the TEM grids resulted in
mixing of the two magnetosome types. Although a significant amount of flux could
be seen emerging from the sides of the larger magnetosomes, the concentration of
flux lines within the crystals showed that the Itaipu-1 magnetosomes in the chain
configuration are SD [54].

A fortuitous arrangement of magnetosomes comprising three large crystals form-
ing a right angle and three elongated crystals showed containment of the magnetic
flux lines parallel to the long axes of the elongated magnetosomes, suggesting that
these latter crystals are SD. On the other hand, the magnetic field pattern in the
large crystals suggested that these crystals contain domain walls and therefore are
not SD in the non-chain configuration (Fig. 11). Thus it appears that the large mag-
netosomes are SD only in the chain configuration where they are magnetized by

Fig. 11. Magnetic field contours for
a non-linear configuration of three
large Itaipu-1 magnetosomes and
three elongated Itaipu-3 magneto-
somes derived from the difference
in holographic phase images after
application of applied fields as indi-
cated by the arrow. The field con-
tours in the elongated magneto-
somes are consistent with single do-
main behavior, whereas the con-
tours in the large magnetosomes are
consistent with the presence of do-
main walls [54].
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the neighboring crystals [54]. Figure 6 shows a theoretical domain-state diagram for
magnetite with calculated SPM, SD, TD and MSD size ranges [55], with solid square
and circle indicating large and elongated magnetosomes, respectively. According to
Fig. 6, the elongated magnetosomes lie in the SD region, in agreement with the
numerical results. In contrast, the large magnetosomes are predicted to lie in the
MSD region where the SD size range is extended for materials of low anisotropy
by the existence of the metastable SD state [50]. The curvature of the field lines
emerging from the sides of the large crystals is typical of the “flower-like” state
predicted by micromagnetic models. This illustrates the power of electron holog-
raphy to determine the magnetic microstructure of crystals with sizes close to the
domain-state transition dimension for comparison with theoretical calculations.

6.3 Mechanism of Bacterial Magnetotaxis

6.3.1 Passive Orientation by the Geomagnetic Field

Magnetotaxis results from the passive orientation of magnetotactic bacteria along
the local vertical direction of the geomagnetic field by the torque exerted by the field
(B) on the cellular dipole moment (M) [20]. The potential energy of the cellular
moment in the magnetic field is given by:

Em = −M B cos θ (2)

where θ is the angle between M and B. Thermal energy at ambient temperatures will
tend to misalign the swimming bacterium. In a state of thermal equilibrium at tem-
perature T , the probability of the moment having energy Em is proportional to the
Boltzmann factor, exp(−Em/kT ), where k is Boltzmann’s constant. The thermally
averaged projection of the dipole moment on the magnetic field can be determined
from the Langevin theory of paramagnetism and is given by the Langevin function

〈cos θ〉 = L(α) = coth(α) − 1/α (3)

where α = M B/kT . The Langevin function is plotted in Fig. 12 and asymptotically
approaches 1 for large α.

For example, experimental determination of the dipole moment per cell using
electron holography for Magnetospirillum magnetotacticum and the cultured marine
vibrioid strain MV-1 gave values of 5 × 10−16 Am2 and 7 × 10−16 Am2, respectively
[75]. In a geomagnetic field of 50 ÌT at room temperature, L(a) is greater than 0.8
for both cells, meaning that cells would swim approximately parallel to the local
direction of the geomagnetic field. If the number of magnetosomes is too low, then
the alignment of the cell and its migration along the field is inefficient. On the other
hand, increasing the number of magnetosomes beyond a certain value will not sig-
nificantly improve the alignment of the cell in the field because of the asymptotic
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Fig. 12. The Langevin function plotted as a function of M B/kT . This function gives the
average alignment of a magnetotactic cell with magnetic moment (M) in a magnetic field
(B). The solid symbol represents the average orientation of magnetotactic bacteria (M.
magnetotacticum and strain MV-1) in a 50-ÌT field at 300 K. The magnetic moment per cell
was determined by electron holography.

nature of the Langevin function. Magnetotactic bacteria have optimized the biomin-
eralization process to produce just the right number of grains for efficient magnetic
navigation in the geomagnetic field.

The migration velocity vm of the bacterium in the direction of B is given by the
component of the forward swimming velocity v0 along the direction of the field,
vm = v0L(a). For magnetotactic bacteria, migration velocities can be >80% of their
forward velocities and are significantly faster than other motile bacteria that may use
only chemotaxis or aerotaxis [20]. Magnetotactic bacteria have effectively turned
a three-dimensional biased random walk problem along a chemical concentration
gradient into a one-dimensional biased random walk along the geomagnetic field.

In addition to the requirement that the magnetic energy be greater than thermal
energy, another condition for magnetotaxis is that the characteristic time scale for
re-orientation in the field direction after the cell is perturbed must be comparable to
the time required to swim several body lengths [20]. Otherwise, magnetotaxis would
lose its adaptive advantage. The re-orientation time, t0, is given approximately by
[78, 79]:

t0 = 8πηR3/M B (4)

where η is the dynamic viscosity of water (η = 1×10−6 m2 s−1) and R is the hydro-
dynamic radius of the bacterium. Typical re-orientation times are <1 s, and meet the
condition for fast alignment time [78]. This equation also forms the basis for measur-
ing the magnetic moment of individual cells in the laboratory by either measuring
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the time required for a cell to rotate into the new field direction after an instanta-
neous field reversal, or in a rotating field, or the width of a “U-turn” executed by
the cell after a field reversal [62, 78, 79]. Estimates of the cellular dipole moments
obtained from these methods for a variety of different magnetotactic bacteria yield
values of 0.3–54 × 10−15 Am2.

Equation (3) also shows that the critical dipole moment of the cell scales as R3

and predicts that as the hydrodynamic radius of the bacterium increases, additional
magnetosomes are required to overcome rotational viscous drag than would be
necessary for passive alignment according to the Langevin function. There are ex-
amples of magnetotactic bacteria that contain hundreds of magnetosomes [33, 79],
many more than required to overcome the thermal energy. One large, rod-shaped
organism, Magnetobacterium bavaricum, contains up to 1000 bullet-shaped mag-
netosomes arranged in several chains traversing the cell [80]. This arrangement of
magnetosomes into multiple chains provides an additional means to enhance the
dipole moment of the cell. Furthermore, due to mutual magnetostatic repulsion of
such chains, the multiple chain design may provide additional mechanical stability
and more effective coupling of the magnetic torque to the cell by forcing the chains
outward toward the cell envelope [81].

6.3.2 Magneto-aerotaxis

As discussed above, the permanent magnetic dipole moment of a cell is generally
large enough so that its interaction with the geomagnetic field overcomes the ther-
mal forces tending to randomize the orientation of the magnetic dipole in its aqueous
surroundings. Since the dipole is fixed in the cell, orientation of the dipole results
in orientation of the cell. Magnetotaxis results as the oriented cell swims along the
magnetic field lines (B). Magnetotactic bacteria, like most free-swimming bacteria,
swim by rotating their helical flagella. The direction of migration, parallel or an-
tiparallel to the magnetic field, is determined by the direction of flagellar rotation
(clockwise (cw) or counter-clockwise (ccw)) which in turn is determined by a second
sensory system, the aerotactic response of the cell [82]. Thus magnetotaxis works
in conjunction with aerotaxis, i. e., magneto-aerotaxis.

Some magnetotactic spirilla, such as Magnetospirillum magnetotacticum, swim
parallel or antiparallel to B and form aerotactic bands [83] at a preferred oxygen
concentration [O2] in oxygen gradient cultures or in suspensions of living cells. In
a homogeneous medium, roughly equal numbers of cells swim in either direction
along B [19]. Most microaerophilic bacteria form aerotactic bands at a preferred
or optimal [O2] where the proton motive force is maximal [84], using a temporal
sensory mechanism [85] that samples the local environment as they swim and com-
pares the present [O2] with that in the recent past. The change in [O2] with time
determines the sense of flagellar rotation [86]. The behavior of individual cells of
M. magnetotacticum in aerotactic bands, termed axial magnetoaerotaxis, is consis-
tent with the temporal sensory mechanism [82]. For these cells, the magnetic field
axis is important, but the field direction is not. Thus the axial magneto-aerotactic
response is invariant with respect to magnetic field reversal.
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In contrast, the ubiquitous freshwater and marine magnetotactic cocci and some
other magnetotactic strains swim persistently in a preferred direction relative to
B when examined microscopically in aerated water drops [19, 87]. In oxygen gra-
dients they can, like the spirilla, swim in both directions along B without turning
around and form aerotactic bands at a preferred [O2] along the concentration gra-
dient. However, unlike the spirilla, the aerotactic behavior of the cocci is not con-
sistent with the temporal sensory mechanism. Instead their behavior is described
by a two-state aerotactic sensory model in which the [O2] determines the sense
of the flagellar rotation and hence the swimming direction relative to B, a model
termed polar magneto-aerotaxis [82] (Fig. 13). Under higher than optimal [O2], a
cell is presumably in an “oxidized state” and ccw flagellar rotation causes the cell
to migrate persistently parallel to B, that is, downward in the Northern hemisphere.
Under reducing conditions, or sub-optimal oxygen concentrations, the cell switches
to a “reduced state”, in which cw flagellar rotation causes the cell to migrate anti-
parallel to B, that is, upward in the Northern Hemisphere. The two-state sensing
mechanism results in an efficient aerotactic response, provided that the oxygen-
gradient is oriented vertically so that it is more or less anti-parallel to B, guiding
the cell back toward the optimal oxygen concentration from either reducing or ox-
idizing conditions. Note that polar magnetoaerotaxis is not invariant to reversal of
the magnetic field. An assay using chemical gradients in thin capillaries has been
developed that distinguishes between axial and polar magneto-aerotaxis [88].

Fig. 13. Schematic diagram showing how polar magneto-aerotaxis keeps cells at the preferred
oxygen concentration in the oxic–anoxic transition zone (OATZ) in chemically stratified
water columns and sediments (NH, Northern hemisphere; SH, Southern hemisphere; Bgeo,
geomagnetic field). In both hemispheres, cells at higher than optimal oxygen concentration in
the “oxidized state” swim forward by rotating their flagella counter clockwise (ccw), whereas
cells at lower than optimal oxygen concentration in the “reduced state” rotate their flagella
clockwise (cw) and swim backward without turning around. Note that the geomagnetic field
selects for cells with polarity such that ccw flagellar rotation causes cells to swim downward
along the magnetic field lines in both hemispheres.
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For both aerotactic mechanisms, migration along magnetic field lines reduces
a three-dimensional search problem to a one-dimensional search problem. Thus,
magnetotaxis is presumably advantageous to motile microorganisms in locales with
horizontal chemical stratification because it increases the efficiency of finding and
maintaining an optimal position in vertical concentration gradients, in this case, ver-
tical oxygen gradients [89]. It is possible that there are other forms of magnetically-
assisted chemotaxis to molecules or ions other than oxygen, such as sulfide, or
magnetically-assisted redox- or phototaxis in bacteria that inhabit the anoxic zone
below the microaerobic zone.

6.4 Conclusion

The grain size, crystallographic orientation and chain assembly of magnetosomes in
magnetotactic bacteria are all highly significant for the function of magnetotaxis in
the geomagnetic field. In fact, the magnetosome chain is a masterpiece of perma-
nent magnet design that makes each cell, in effect, a self-propelled magnetic dipole.
It solves the problem of designing a permanent magnetic compass needle that is
sufficiently magnetic to be oriented in the geomagnetic field in the face of buffeting
by thermal (Brownian) noise, yet fits into a one micron diameter cell and can be
assembled in situ. The cells migrate along magnetic field lines and use aerotaxis
to efficiently locate and remain at an optimal oxygen concentration in the verti-
cal oxygen concentration gradient in a water column or sediments with horizontal
chemical stratification.

Magnetically sensitive behavior, including orientation and homing, have been
reported in a number of higher organisms [15, 16, 18, 90, 91]. Magnetite crystals
with morphologies and sizes similar to those produced by some magnetotactic bac-
teria have been found in the ethmoid tissues of salmon [92], trout [6], and pigeons
[17], and in the human brain [93]. The fact that these and possibly other organisms
biomineralize SD magnetite crystals suggests that magnetoreception in these and
possibly other organisms is based on SD magnetite. It has been suggested that the
as yet unknown genes responsible for magnetite biomineralization in higher organ-
isms could have originated in the magnetotactic bacteria [94]. However, it should be
noted that models for magnetoreception have been proposed that do not involve
magnetic minerals [95]. Ritz et al., for example, have proposed a photoreceptor-
based model for magnetoreception in birds in which anisotropic hyperfine interac-
tions in oriented radical pairs produced by photon absorption influence the visual
transduction pathway in a manner that depends on the orientation of the bird in
the geomagnetic field [91].

Finally, magnetite crystals with morphologies and sizes similar to those in mag-
netotactic bacteria have been reported in the Martian meteorite ALH84001 [37].
Whether or not these crystals are evidence for life on ancient Mars is still under
discussion [96, 97, 98] but their discovery has raised the possibility that nanophase
magnetite could serve as a biomarker for life beyond the earth.
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7 Magnetic Ordering due to Dipolar Interaction
in Low Dimensional Materials

Pierre Panissod and Marc Drillon

7.1 Introduction

In the quest towards the development of new materials, in which the dimensions of
the building units do not exceed a few atoms in at least one direction of the space –
organic magnets built of spin chains or lamellae, for instance, or magnetic dots, wires
and multilayers – the scientists are currently facing the influence of through-space
interactions of dipolar origin. Basically, the concept of dipolar interaction is very
familiar in solid state physics, and its manifestations at the macroscopic scale are
well described in many textbooks [1], and actually used for magnetic applications.
However, at the atomic scale, this interaction is mostly negligible and, when it occurs,
the magnetic ordering is controlled by the quantum exchange mechanism which
usually prevails in 3D networks.

In this chapter, we demonstrate that the dipole–dipole interaction may have a
foremost importance when considering low dimensional magnetic materials, made
of strongly correlated objects of dimensionality zero (0D), one (1D) or two (2D)
interacting through a weak interaction of dipolar origin. The aim is not to provide
an exhaustive review on the dipolar interaction effects in magnetic materials but
rather an outlook, both theoretical and experimental, on the magnetic ordering of
0D to 2D units embedded in higher dimensionality systems.

From a fundamental viewpoint, magnetic ordering due to pure dipole–dipole
interaction is a clean phase transition problem since the related Hamiltonian does
not involve any adjustable parameter: unlike the exchange-coupled systems, one
cannot change the form and the magnitude of the interaction in order to improve the
agreement between theory and experiment. Therefore, experimental observations
provide a direct answer for testing the models used to predict the magnetic structure
and the ordering temperature, if observed.

From the applied physics viewpoint, the pure dipole–dipole interaction is essen-
tially an academic problem as long as only ionic/atomic moments are involved. In-
deed the expected dipolar ordering temperature is of the order of µMs/kB (Ms is the
saturation magnetization and µ the individual moment) that is at most a few Kelvin
for rare earth compounds. Nevertheless, there is nowadays a large renaissance of
interest for pure dipole systems that involve not individual atomic moments but mag-
netic assemblies comprising a large number of strongly exchange coupled atomic
moments. Indeed the magnetic ordering temperature for such systems can be much
higher than in classical dipole systems because the magnetic moment µ of the objects
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is several order of magnitude larger than the atomic ones, whereas the magnetiza-
tion M is only slightly reduced. Such a situation may be realized in an assembly of 1D
or 2D arrays of single-domain ferromagnetic dots, or arrays of magnetic nanowires.
Another situation where the dipolar interaction might play a significant part in the
magnetic ordering is the case of materials composed of ferro- or ferrimagnetic chains
with large intra-chain exchange coupling, connected to each other by a weak inter-
chain exchange coupling. Such situation extends to materials composed of magnetic
planes separated by bulky diamagnetic spacers although, unlike the 1D chain case,
2D magnetic ordering might also take place due to in-plane exchange coupling.

It is, of course, well known that the dipolar effects can change the critical prop-
erties of three-dimensional ferromagnets where the exchange interaction largely
dominates [2]. This is due to the long range character of the interaction. One im-
mediate consequence of which is that the magnetostatic energy is very significant
in real – finite size – samples, and depends on the shape and size of the sample.
However, since the focus is on the dipolar interaction between magnetic objects,
the effects of this interaction inside a single object, in particular the most obvious
ones (magnetic domain patterns, shape dependent anisotropy and magnetization
reversal modes) are beyond the scope of this chapter.

For 2D systems the presence of dipolar interaction has even more striking con-
sequences. Indeed, while a 2D arrays of spins coupled by isotropic exchange cannot
sustain long-range order, it has been demonstrated that dipole–dipole interaction
induces an in-plane anisotropy that stabilizes long range magnetic order, namely
ferromagnetic-like if the exchange coupling is ferromagnetic [3–5]. The dipolar in-
teraction also can give rise to a rich variety of spatially modulated phases in 2D
systems [6–11] and the competition between magnetic surface anisotropy and mag-
netostatic dipolar energy can lead to the existence of a reorientation transition. This
is evidenced in magnetic films such that the surface and bulk magneto-crystalline
anisotropy favor an easy magnetization axis perpendicular to the film [11–15].

The outline of the chapter is as follows. After a short recall of the peculiarities of
the dipole–dipole interaction, Section 7.2 is devoted to magnetic ordering in pure
(point) dipole systems. Section 7.3 covers arrays of single domain ferromagnetic
or superparamagnetic objects. Finally, Section 7.4 deals with the occurrence of 3D
ferromagnetism in molecular compounds due to the dipolar interaction between
chain or layer units, where no long range magnetic order is expected.

7.2 Magnetic Ordering in Pure Dipole Systems

7.2.1 The Dipole–Dipole Interaction – A Well Known Hamiltonian?

The energy associated with the dipole–dipole interaction between two magnetic
moments Ìi and Ì j is:

Edip = −
{µ0

4π

} 1

r3
i j

[
3(Ìi · ui j )ui j − Ìi

] · Ì j = −Bd,i j · Ì j (1)
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where ui j is the unit vector along the bond between the moments and ri j the length
of this bond. Note that here, and throughout this chapter, the equations are written
for the international unit system (SI). If the CGS–emu unit system were used the
term {µ0/4π} between the curly braces should be omitted. For instance in the CGS
system the dipolar field arising from Ìi at the moment Ì j is:

Bd,i j = 1

r3
i j

[
3(Ìi · ui j )ui j − Ìi

]
[Gauss] (2)

whereas in the international system (SI) it is:

Bd,i j = µ0

4π

1

r3
i j

[
3(Ìi · ui j )ui j − Ìi

]
[Tesla] (2′)

Considering the case of parallel moments for simplicity, the dipolar energy of
the moment pair can be re-written as:

Edip = −
{µ0

4π

} µiµ j

r3

[
3 cos2(θ) − 1

]
(1′)

where θ is the angle between the moment orientation and the bonding vector be-
tween the moments. This expression shows immediately the intricate character of
the dipolar interaction as being:

• long ranged: for a 3D assembly of dipoles one has to sum up over all pair ener-
gies and this summation (or integration) is not absolutely convergent – the sum
	n(r)/(r3) or the integral

∫
r2dr/r3 do not converge [(n(r) ≈ r2dr is the number

of moment pairs separated by the distance r ],
• strongly anisotropic – leading to ferromagnetic coupling for cos2(θ) > 1/3

(θ < 54.75◦) or antiferromagnetic coupling for cos2(θ) < 1/3 (θ > 54.75◦).

These properties make it usually impossible to handle the problem analytically.
Moreover:

• the first property makes the boundary conditions (finite size sample) a crucial
ingredient of the problem (i. e. the dipolar energy is not only a property of the
material but also of the object shape); and

• beyond the simple case of a single pair of moments, the second property makes the
prediction of the actual kind of ordering not intuitive, as it is strongly dependent
on the locations of the moments on a lattice.

7.2.2 Ordering Temperature – The Mean-field Approach

The possibility, type and magnitude of the magnetic order that should occur in a
lattice of interacting magnetic dipoles has been studied by a number of investigators
over the past century, beginning with the original work of Onsager [16] who treated
the problem classically in a high-temperature approximation. A consistent quantum
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mechanical theory was subsequently developed by Van Vleck [17] who expands the
partition sum of the crystal in decreasing powers of the temperature. Both found
that “dipolar ferromagnetism” is impossible. However, such calculations fail at low
temperatures where the dipole interactions becomes important.

The simplest way to tackle the question of dipole ordering, and, more particularly,
the question of dipole ferromagnetism is the mean field approach. This approxima-
tion is rather crude in terms of the existence of magnetic ordering, of the nature of
the ordering and, if any ordering, it overestimates the critical temperature as com-
pared to exact calculations or better approximations [18–20]. However, it is very
instructive about the effects of the long range character of the dipolar interaction.

7.2.2.1 The Local-field Approximation

Basically a local field approach consists in solving a self-consistent set of two 3N -
equations (where N is the number of moments):

Bi = F(〈Ì j �=i 〉) (3)

and

〈Ìi 〉 = Ìi G(Ìi Bi/kBT ) (4)

Equation (3) yields the local field acting on the moment Ìi as a function F of – a
summation over – all the other moments 〈Ì j �=i 〉, while Eq. (4) yields the expectation
value 〈Ìi 〉 of each moment at thermal equilibrium in its local field Bi and along this
field. The function G can be the Langevin function for freely rotating classical spins,
a hyperbolic tangent if the orientation of the classical spins is fixed, or the Brillouin
function for a quantum spin. The main approximation of the approach is to neglect
any temporal and spatial correlation between the moments.

Finding the critical temperature TC, for magnetic ordering within such approxi-
mation consists merely in looking for the largest T for which there exists a non-zero
solution of 〈Ìi 〉. For the purpose Eq. (4) can be linearized around TC where Bi and
〈Ìi 〉 are vanishing and becomes

〈Ìi 〉 = (µi Bi/nkBT )µi (4′)

where n is the number of degrees of freedom per spin (n = 3 for isotropic spins; for
classical moments with uniaxial anisotropy n = 3 if the anisotropy axis are random
or 1 if they are parallel).

7.2.2.2 The Mean-field Approximation

To look for the possibility of ferromagnetic order a second approximation step con-
sists in assuming that all moments experience the same – mean – field B0 that takes
the average value of the local fields Bi over all magnetic sites. This second step
obviously neglects all spatial fluctuations of the local field.
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In the simplest case of identical moments µ Eq. (4′) becomes:

〈µ〉 = (µB0/nkBT )µ (5)

where n takes the value 1 for uniaxial moments or 3 for freely rotating moments
or quantum spins.

As to the mean dipole field, Eq. (3) can be integrated over the sample within a
continuous approximation, which yields

B0 = {µ0/4π}(4π/3 − NM)ρ〈µ〉 = {µ0/4π}(4π/3 − NM)M(T ) (6)

where ρ is the moment density, M(T ) is the spontaneous magnetization and Ms = ρµ

is the saturation magnetization at 0 K. The influence of the sample shapes appears
in Eq. (6) as the demagnetizing factor NM that takes the value 4π/3 for a sphere,
0 or 4π for a film when M is in plane or perpendicular to it, respectively, and 0 or
2π for a thin wire when M is along its long axis or transverse to it, respectively.

Equation (6) can be re-written:

B0 = BLor − Bdem

where BLor = {µ0/4π}4π M/3 is the Lorentz cavity field, and Bdem = NM{µ0/4π}·
4π M/3 is the demagnetizing field.

Combining Eqs. (5) and (6) yield the critical temperature:

nkBTC = {µ0/4π}(4π/3 − NM)µMs = {µ0/4π}(4π/3 − NM)ρµ2 (7)

This leads to two important conclusions. First, the ferromagnetic ordering temper-
ature, if any, depends on both the value of magnetization and that of the moment:
the typical dipolar energy is {µ0/4π}µMs = {µ0/4π}ρµ2. The immediate conse-
quence is that the ordering temperature TC ≈ {µ0/4π}ρµ2/kB for systems built of
individual atomic moments shall never exceed a few K. However systems composed
of larger moments Nµ, comprising a large number N of strongly exchange coupled
atomic moments µ, may order at much higher temperature since ρ′(Nµ)2 � ρµ2

even though their magnetization may be lower than that of the first ones (ρ′ < ρ/N).
This opens the possibility to obtain “dipolar” magnets at room temperature.

Second, the long range character of the dipolar interaction emphasizes boundary
effects even for an arbitrary large sample: while an infinite, boundary free sample
(NM = 0, Bdem = 0) is predicted to order ferromagnetically for any magnetization
(density), the Curie temperature of a real, bounded sample, depends on its shape.
In particular a spherical sample (NM = 4π/3 in Eq. 7) should not order, regardless
of its size and magnetization, because of the demagnetizing field arising from the
discontinuity on the surface. It must be noted however, that this conclusion only
holds for a uniformly magnetized, single domain, sample. Indeed, from the point
of view of domain theory, in 1951 C. Kittel [21] has argued that, if ferromagnetism
is possible for a boundary free sample, it should occur for all specimen sizes and
shapes provided the sample can minimize its demagnetizing energy by breaking into
domains. This simple example stresses the tricky effects of the long range character
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of the dipolar interaction. One must always pay attention to whether calculations re-
ported in the literature are for a sample without an external surface (using periodic
replicas) or for a sample with an external surface (even if it is infinite). Theoreti-
cal investigations generally favor the former case because it is independent of the
sample shape and also because accurate calculations of the dipolar energy can be
performed by taking advantage of the periodic character. Oppositely real samples
are obviously bounded.

The approximation in the simplest mean field approach neglects the spatial fluc-
tuations of the moments. Therefore, even if the ferromagnetic state may be more
stable than the paramagnetic one, at least in the absence of demagnetizing field, it
does not mean that another type of spin ordering is not more stable. Indeed, the
magnetization is not the only factor in determining the local internal field as shown
first by Sauer [22] who computed the energies of certain intuitively selected dipole
arrays and found that ordered arrays of zero net magnetization (antiferromagnets)
may have widely different energies, some of them lower than that due to the Lorentz
field. The question then arose of identifying the actual magnetic order in the ground
state of a pure dipole system for a given network (periodic or random) of moments
(single- or multi-valued).

7.2.3 Dipolar Ordering in 3D Systems

Actually the exact prediction of the ordered structures arising in a system of inter-
acting moments is still an unsolved problem. A prediction of such structures can be
made only through approximate methods whose validity must be tested by experi-
ment. As to moments interacting through the dipole force, because of its intricate
angular dependence and long range nature, and despite the exact knowledge of the
Hamiltonian, the more general theoretical approaches limit themselves to a calcu-
lation of the interaction energy of periodically ordered arrays of dipoles at zero
Kelvin. In the general case, the type of magnetic order predicted by these theories
depends critically on the details of the lattice parameters, and the anisotropy of the
magnetic moments, or g tensor.

7.2.3.1 Crystalline 3D Systems – The Cubic Case

That the dipolar interaction could be responsible for the ordering has been suggested
by a number of experiments, mostly in rare earth based compounds. For example,
the magnetic ordering EuSO4, near 1 K, is because of dipolar interactions [23, 24].

Actually, as early as 1946, Luttinger and Tisza [25] made the prediction that the
ground state of an assembly of freely rotating magnetic dipoles sitting on either
a face centered cubic (fcc) or a body centered cubic (bcc) lattice without bound-
aries would be ferromagnetic even in the absence of exchange interaction. On the
contrary, for dipoles on a simple cubic lattice (sc) the ground state would be anti-
ferromagnetic.
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Fig. 1. Ground state AF spin configurations for a sphere of point dipoles on a simple cubic
(left) and body centered cubic (right) lattices (after Luttinger and Tisza [25]). For boundary
free samples – no demagnetizing energy coming from the surface – the simple cubic lattice
is still antiferromagnetic but the body centered and face centered lattices are ferromagnetic.

The Luttinger method uses the fact that, within the local field approximation,
the dipolar interaction is quadratic in the components of the moments which can
be diagonalized. The diagonalization yields base dipole arrays (spin arrangements
on the lattice) as eigenvectors and the associated dipolar energy as eigenvalues.
Arbitrary spin arrays are linear combinations of the base arrays so that their free
energy at 0 K is easily calculated (since moments take their full value) and the one
with the lowest energy is considered as the ground state.

In fact, for the fcc, bcc, and sc lattices, the minimum energy configuration for
a spherical sample has been found antiferromagnetic (Fig. 1). Indeed the lowest
energy constants of the non-polarized arrays are for sc − 2.675{µ0/4π}ρµ2, for
bcc−1.986{µ0/4π}ρµ2, and for fcc−1.808{µ0/4π}ρµ2 while the energy of the ferro-
magnetic array is 0 for all three cubic types, as expected for sites of cubic symmetry
in a spherical sample. However, if the demagnetizing energy 1/2(4π/3){µ0/4π}ρµ2

is subtracted from the energy of the ferromagnetic array, as it should be for a bound-
aryless sample or a very long thin needle, the energy constant of the ferromagnetic
array becomes −(2π/3){µ0/4π}ρµ2 = −2.094{µ0/4π}ρµ2. Thus the sc array is al-
ways non-ferromagnetic, while bcc and fcc cases predict ferromagnetism for long
thin needles.

The method of Luttinger and Tisza to determine the kind of magnetic ordering in
a crystal is one of the two attempts (to our knowledge) towards a general solution
of the problem. The other one, proposed by Villain, was initially used to investigate
ordering in spin systems with short-range interactions, and led to the prediction of
helical structures [26]. It has also proved very successful in the prediction of the
dipolar magnetic ordering of nuclei [27–29]. Both methods are similar in that they
use the same local field approximation (Eqs. 3 and 4). The difference is that where
Villain considers the vicinity of the transition temperature when the magnetization
is infinitely small (Eq. 4′), Luttinger and Tisza look for the stable structures in the
low temperature limit (〈Ìi 〉 = µi Bi/Bi ). The methods are shown to yield the same
stable magnetic structure at T = 0 for the former and at TC for the latter [29] so
that presumably the same structure holds between the two, at least for the local
approach.
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Extensions of the Luttinger method have been devised and applied to less sym-
metrical cases [30] but it was shown that it cannot be applied for systems where
more than two equivalent spins per unit cell are present [31]. Presently, thanks to
the easy access to fast computing systems, it is rather easy to search for the stable
dipolar structures within the local field approach at 0 K by numerically performing
the energy minimization as a function of the orientation of the spins for periodically
ordered arrays. The calculations are performed in the reciprocal space, which en-
ables to perform energy minimization for one or several continuous wave vectors
thus minimizing the chances to omit some structures. However, it is always pos-
sible that a complicated magnetic structure is missed. More exact numerical sim-
ulations using the Monte-Carlo method are now preferred, as they also yield the
thermodynamics information (see below), but they have also some intrinsic prob-
lem of finite site effects. In addition, such simulations are quite time demanding and
may get stuck in a local energy minimum that can be misinterpreted as the final
state.

Since Luttinger and Tisza treated the magnetic spins as classical quantities, the
question arose as to the validity of their conclusions in the presence of quantum
fluctuations. Cohen and Keffer [32] examined the quantum-mechanical conditions
of stability and calculated the zero-point energy of ferromagnetic arrays of point
dipoles in the three primitive cubic lattices. They used a linearized spin-wave ap-
proximation, modified to include dipole–dipole interactions. They found that the
quantum-mechanical energy of the ferromagnetic state is sufficiently less than the
classical energies of other arrays to suggest that ferromagnetism will occur for spins
greater than 5/2 in the fcc and 6 in the bcc lattice. Later quantum calculations [33–35]
confirmed the predictions of the classical theory.

Although a number of experiments in less symmetrical systems suggested the
veracity of Luttinger’s prediction [30], it has been only very recently investigated
for a true fcc lattice. Experiments by Roser et al. [36] were performed on fcc rare-
earth (R) salts Cs2NaR(NO2)6. The compounds have perfect tetrahedral symme-
try at the rare-earth site and the magnetic ions are sufficiently far apart so that
the exchange interaction through the R-O-N-Na-N-O-R path is less (10 mK) than
the dipolar energy (100 mK). As noted above the demagnetizing field prevents the
spontaneous appearance of a non-zero magnetization for spherical samples. Be-
cause of the demagnetizing factor NM the measured (apparent) sample suscepti-
bility χext = χ/(1 + χ NM) reaches the limit value 1/NM at TC when the intrinsic
susceptibility χ diverges. Experimentally, χext has indeed been found to saturate
at low temperatures to a value close to 1/NM. This was interpreted as a dipolar
ferromagnetic transition, which occurs at a temperature comparable to the dipolar
energy scale (approximately 0.1 K). The results appear to hold for four members
of the series Cs2NaR(NO2) (R = Nd, Gd, Dy and Er). No magnetic transition was
observed above 6.5 mK for the other rare earths.

More recently Bouchaud and Zérah [37] have investigated the dipolar induced
ferromagnetic transition on a fcc lattice using a Monte-Carlo technique. The dipolar
field acting on a given dipole was calculated using the Ewald’s sum procedure for fast
convergence with a sample periodically replicated in the three directions [38, 39].
This ensures that the system is free of a demagnetizing field from the surface. The
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ferromagnetic TC and the critical exponents in three dimensions were deduced from
the simulation. The Curie temperature was found at kBTC = 0.43{µ0/4π}ρµ2, half
of the experimental result [36] while the mean field prediction is 1.5 larger than the
experimental result. An interesting finding of the study is that the ferromagnetic
low-temperature phase exhibits a reorientation transition (roughly at TC/2) to a
phase with a (100) easy magnetization axis from a phase with a (111) easy axis. Note
that the Luttinger approach predicts an isotropic ferromagnet for a cubic system
(the easy magnetization axis being determined only by the shape of the sample).
The anisotropy evidenced by the Monte-Carlo simulation is probably a thermally
induced anisotropy on the spin-wave spectrum as it has been demonstrated in two
dimensional cases (see below). Another result of the study is that a weak disorder
would not destroy the order so that one can think of a model system of spherical
superparamagnetic particles arranged regularly in a suitable diamagnetic matrix
like zeolites or a polymer exhibiting ordered mesophases [40]. The authors show
that, indeed, such a lattice of spherical particles of permalloy, of diameter 10 nm,
volume fraction 10%, would exhibit a Curie temperature at about 550 K. However a
strong disorder, where the dipole positions are completely random, has been shown
to destroy the long-range order [41, 42] since, due to the r−3 dependence of the
dipolar energy, the coupling constant is so strongly fluctuating that its variance and
mean value diverges (although hard cores will in practice introduce a cutoff – see
below).

7.2.3.2 Random 3D Systems

Although the case of randomly dispersed magnetic particles is a topic of large in-
terest, it will only be shortly introduced here since a full chapter, at least, would be
needed to survey reasonably the topic [43, 44].

The magnetic properties of small spherical ferromagnetic particles (diameter in
the 1–100 nm range) are governed by their single domain character (when their
size is smaller than the exchange correlation length) and their magnetic anisotropy,
magneto-crystalline (single ion) and/or shape anisotropy. Non-interacting particles
are “superparamagnetic” as first introduced by Néel in 1949, i. e. above a certain
temperature, called the blocking temperature, TB, they behave as paramagnetic
molecules with giant magnetic moment. This behavior results from the sponta-
neous reversal of their magnetization through a thermally activated process over
the anisotropy energy barrier, even in the absence of an externally applied field.
The average time for the particles to reverse their magnetic moment is given by
τ = τ0 exp(K V/kBT ), where τ−1

0 is a characteristic attempt frequency of the order
of 1010 Hz, and K V is the effective energy barrier between equilibrium orientations
defined by the magnetic anisotropy (V is the particle volume and K the anisotropy
energy density of the particle). Below TB the single-domain particles are in the
“blocked” state where they behave as a “normal” ferromagnet showing hysteretic
magnetization loops and remanence. The complexity of the problem makes exact
solutions possible only in few limiting cases, at T = 0 K for fully blocked particles
[45], or T � TB in the fully super-paramagnetic limit [46, 47]. It is worth noting
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that there is no phase transition between the superparamagnetic regime and the
blocked one, but merely a freezing of the magnetization for a time-scale τ in one
of the orientations permitted by the magnetic anisotropy. As a consequence the
blocking temperature TB depends on the characteristic time of the measurement
technique τm from minutes in standard magnetometric measurement to 10−9 s in
Mössbauer spectroscopy, for example. For a given measurement time τm, TB will
be the temperature such that τ(TB) = τm, i. e. kBTB = K V/Ln(τm/τ0).

In real systems the problem becomes even more complicated because of the
presence of a distribution of the particle sizes and, of course, that of unavoidable
interactions between the particles. The first problem has been solved with the syn-
thesis of the so-called “single molecule magnets” [48], [Mn12O12(OAc)16(H2O)4] ·
2AcOH · 4H2O and [Fe8(N3C6H15)6O2(OH)12] · [Br8 · 9H2O] which are intrinsi-
cally mono-disperse [49, 50]. These systems have been extensively studied in order
to unravel the question of magnetic quantum tunneling [51].

As to the role of the dipolar interactions in fine particle systems, many theo-
retical and experimental efforts have focused recently on their understanding of
[52]. Granular metal solids and frozen ferrofluids have been used to investigate the
role of dipolar interactions. In the latter the concentration of magnetic particles in
the liquid makes it easy to control the average particle distance and, therefore, the
strength of the interactions [53–55]. Evidence for interactions among the magnetic
entities have been undoubtedly found by using several experimental techniques and
in different physical systems [56–65].

Because of the complexity of the fundamental problem and, also, of the real ex-
perimental systems, most attempts to treat quantitatively the dipolar interactions
use phenomenological approaches involving merely an adjustable mean field 〈B0〉
or interaction energy 〈B2

0 〉. Thanks to recent advances of numerical calculations,
realistic multiparticle systems could be reliably simulated using Monte-Carlo tech-
niques where the exact dipolar Hamiltonian is explicitly taken into account [66–71].
Most of the simulations and the experimental results agree that the magnetostatic
interaction results in an increase of TB – with a noticeable exception [61] – and a
slower decay of the remanence and of the coercivity with increasing temperature.
Although no long range ferromagnetic order has been demonstrated, the existence
of a short range ferromagnetic correlation [67] or vortices (flux closing patterns)
[70] could be responsible for the effects.

As to the question of long range magnetic ordering, both the long range charac-
ter of the dipolar interaction and the randomness of the systems makes it unlikely,
as noted at the end of the previous section. However, the mean field approxima-
tion results have been recently revisited by taking into account the fact that dipoles
cannot be closer than a minimum “hard core” distance a thus eliminating the 1/r3

divergence of the fluctuations [72]. The conclusion drawn out of this analytical cal-
culation is that magnetic ordering may exist, above some critical volume fraction ρc,
ρc = 3/(10a3) for freely rotating dipoles and ρc = 9/(16a3) for oriented uniaxial
moments. In contrast, an assembly of randomly oriented uniaxial particles, which is
the most investigated case, would not order. Note that the usual mean field approxi-
mation (Section 7.2.2.2) does note distinguish between freely rotating moments and
randomly oriented uniaxial moments.
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It is worth noting that spin glass-like properties are often invoked to describe the
properties of randomly positioned, interacting, dipoles [56, 57] and recent experi-
ments points towards the existence of a true magnetic transition in some systems
where the blocking (critical ?) temperature takes very close values for characteristic
measurement times as different as 100 s and 10−9 s [63].

7.2.4 Dipolar Ordering in 2D Systems

A rapid examination of the interaction energy between nearest neighbors dipoles
for a planar system suggests immediately that the ground state of the system is an-
tiferromagnetic. However it was realized in the nineteen-eighties that the situation
is more subtle than this intuitive conclusion in several aspects. First, in the case of
the square and honeycomb lattices, it can be shown that the ground state is highly
degenerate and defines a continuous manifold of spin configurations. Second, for
the rhombic lattice and in particular for the triangular lattice it was shown that the
ground state is ferromagnetic.

7.2.4.1 The Square and Honeycomb Lattice

In 1983 Belobrov et al. [73] showed that the ground state spin configuration of a
square planar lattice of dipoles exhibits a continuous degeneracy, i. e. all configura-
tions where the two spins on one side of the unit square make an angle 0 + α and
0−α, respectively, with the a axis and 180◦+a and 180◦−a, respectively, on the other
side have the same energy (Fig. 2a). Since α is an arbitrary angle the degeneracy of
the ground state would imply the existence of a gapless excitation at zero Kelvin in
spite of the fact that the dipolar interaction does not exhibit a continuous symmetry
with respect to rotation of the spins. In both the Heisenberg and XY ferromagnetic
exchange models the existence of gapless spin-wave excitations destroys long-range
order at any finite temperature in the thermodynamic limit [74]. However, in the
present case the degeneracy of the ground state is accidental, not a property of the
Hamiltonian. This led to question the suppression of the long-range magnetic order
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Fig. 2. “Spin rotator” ground states – continuously degenerated – antiferromagnetic order of
the planar square (left – after Belobrov et al. [73]) and the honeycomb (right – after Ibrahim
and Zimmerman [76]) lattices of point dipoles. The dipolar free energy is independent of
the – arbitrary – value of α.
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at finite temperature. Indeed, in 1987, Monte-Carlo simulation for the same system
showed [75] that this degeneracy is removed at finite temperature where a colum-
nar antiferromagnetic configuration along the a axis is preferred. The same kind of
continuous degeneracy was found by Zimmermann et al. for the honeycomb lattice
[76] (Fig. 2b) in their attempt to explain the magnetic susceptibility measured in
the plane of FeCl3 graphite intercalation compounds. The susceptibility measure-
ment in the compounds show a maximum around 2 K and a power law temperature
dependence with a critical exponent of approximately 2, greater than that of a 2D
Ising system [77]. These results suggested a second order magnetic transition that
they attributed to the dipolar interaction between the Fe(III) ions. Both systems
were revisited by Prakash and Henley [78] using a linearized spin wave calculation.
They showed that, despite the fact that the ground state exhibits a continuous de-
generacy, the effects of thermal fluctuations, dilution, and a uniform external field
induce an effective potential in the free energy that selects particular orientations
of the spins. They concluded that the systems are likely to order magnetically at
low temperature. Similar effects of fluctuations, named “ordering due to disorder”,
have been studied in various Ising systems called “spin rotators” with an infinite
ground-state entropy like the frustrated Ising antiferromagnet on a fcc lattice [79–
81]. Prakash and Henley used a model where the interaction had the same form as
dipoles but limited to nearest neighbors. The full dipolar Hamiltonian was investi-
gated in the case of the square lattice by De’Bell et al. who solved the problem in
the linearized spin wave approximation and through Monte-Carlo simulations [82].
They showed that comparison of the Monte-Carlo results with those from spin-wave
theory indicate that the system orders at a finite critical temperature. The results
were confirmed by Rastelli et al. [83]. Potential systems where this ordering might
take place are some high-TC superconducting copper oxides where the rare earth
ions form a quasi-two-dimensional, square lattice [84–87] but the question of long
range magnetic ordering in these systems is still open.

7.2.4.2 The More General Rhombic Case

The square planar lattice of dipoles, as a spin rotator, is an interesting fundamental
problem but the degeneracy of its ground state is lifted as soon as it undergoes a
rhombic distortion. The more general case of the rhombic planar lattice has been
examined by Rosenbaum et al. [88–90]. They have shown that for a small distor-
tion of the square lattice – rhombic angle 78◦ < ϕ < 90◦ – the ground state is
antiferromagnetic with moments parallel to the a axis. However, the ground state is
ferromagnetic for ϕ < 78◦. The easy magnetization axis is along the long diagonal
(counter-intuitive) for 78◦ > ϕ > 60◦, and along the short diagonal for ϕ < 60◦. It
is isotropic in plane for the triangular lattice (ϕ = 60◦) – Fig. 3.

Since the phases with ferromagnetic and antiferromagnetic long-range order have
different symmetries, the phase transition between them must be of first order. This
means also that the ferromagnetic state may be metastable for a slightly distorted
square lattice (ϕ > 78◦). This question and the mechanisms of the magnetization
reversal have been analyzed by Fraerman and Sapozhnikov [91]. They found that
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Fig. 3. Dipolar free energy at 0 K of selected spin configurations (top) on a planar rhombic
lattice as a function of the rhombus angle ϕ (after Rosenbaum et al. [88–90]). The ground
state is ferromagnetic (full symbols) for ϕ < 78◦ and, in particular for the triangular hexag-
onal lattice. For 78◦ < ϕ < 90◦ the ground state is antiferromagnetic (open symbols) but
the ferromagnetic order is still metastable [91]. The square lattice shows a “mini-vortex”,
“spin rotator state” (Fig. 2). For small angles, dipoles are ferromagnetically aligned along
the dense rows, but the ferromagnetic and antiferromagnetic alignment between dense rows
are nearly degenerated.

the ferromagnetic state is metastable in zero field except for the square lattice. This
implies that a metamagnetic transition should be observed on a virgin sample and
the system may exhibit hysteresis and remanence as a ferromagnet. Owing to the
weakness of the energy difference between the two states, the presence of mag-
netic anisotropy, even moderate, may also easily favor local energy minima for the
ferromagnetic alignment.

The magnetic properties of the square and triangular systems have also been
investigated at 0 K by Russier [92], who confirms the antiferromagnetic and the
ferromagnetic state of the pure dipole square and triangular lattice, respectively.
When a random uniaxial anisotropy is introduced in the system, the long-range
order is lost but the local ordering (correlation function) is still reminiscent of the
pure dipole case. It must be stressed, though, that the response of the system to
an external field (magnetization loops, coercive fields) is nearly independent of the
lattice symmetry, which is certainly due to the metastable character of the local
ferromagnetic order in the presence of anisotropy.
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7.2.4.3 Random 2D Systems

Cases of planar random dipole systems were studied by Monte-Carlo simulations
[70, 71] together with the 3D cases. These studies aimed to explain the magnetic
properties of granular layers. The results are essentially similar to the 3D case. One
interest of the studies is the possibility to visualize more easily snapshots of the
spin arrangement at equilibrium as well as some stages during a magnetization re-
versal. Figure 4 illustrates the kind of short range ferromagnetic correlation that
can be found in the simulation and the snapshot corresponding to the spatial corre-
lation function. However, at longer distances, the correlation is antiferromagnetic
(negative).

7.3 Strongly Correlated Extended Objects

This section deals now with finite magnetic objects interacting only through magnetic
dipole interaction. Within individual objects the exchange interaction dominates and
is much greater than the thermal energy so that, as far as a single object is concerned,
it is either ferromagnetic or superparamagnetic depending on the strength of its
magnetic anisotropy energy with respect to kBT .

Below are examples that have been treated as arrays of point dipoles, as they
illustrate the theoretical predictions of the previous section. Simple calculations of
the dipolar interaction energy (or average field) between two spheres or two cubes
[70] show that it is quite close to that of point dipoles with the same moment as soon
as the distance between the centers is larger than 1.5 times their diameter (or side
length). However, for objects whose shape is far from a sphere or a cube, the stray
fields are very different in strength and geometry from that of a point dipole, even
for distances larger than noted above. In addition the shape anisotropy of the objects
must be taken into account. It must be stressed that, while the exchange interaction
is usually much larger that the magneto-crystalline or single ion anisotropy energy,
this is not the case for the dipolar coupling. Therefore, it is expected that in many
cases the anisotropy will play a significant part in determining or selecting the ground
state configuration. More generally, even if a ground state is antiferromagnetic, the
anisotropy energy may maintain the system in a ferromagnetic metastable state
even in zero field leading to magnetization loops similar to that of ferromagnetic
material (see the first example in Section 7.3.2).

7.3.1 Stacking of Magnetic Planes

The dipolar interaction between infinite and uniformly ferromagnetic planes is van-
ishingly small (per unit area). Therefore the question of its effects arises only for
stacked or lamellar systems of finite lateral size. As far as uniformly magnetized
planes are concerned, the problem is trivial, close to that of the 1D dipole array.
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Fig. 4. A Monte-Carlo snapshot of the spin configuration of a planar random array of
point dipoles (top) showing short ferromagnetic queues of dipoles and flux closing patterns
(vortices) (after Altbit et al. [70]. The bottom pane shows the spatial correlation function
〈Si (r)S j (r + d)〉 computed for this snapshot showing ferromagnetic correlation (positive) at
short distances and antiferromagnetic correlation (negative) at long distances. d is in units
of the average nearest neighbor distance.

The coupling which arises from the stray fields is antiferromagnetic when the mag-
netization is in the planes (the most common case) and ferromagnetic when the
magnetization is perpendicular to the plane. A number of studies of the magne-
tostatic coupling between ferromagnetic ultrathin films have been performed [93]
because it is a concern for applications where a good decoupling is sought for (the
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opposite of the main topic of this chapter). Beside the stray fields at the edges of a
finite plane, the most common source of coupling are the stray fields originating in
the roughness of the surface (Néel’s “orange peel” mechanism) [94, 95]. The cases
where domains and domain walls are present in the planes is an even larger concern
for applications, since the stray fields can be several orders of magnitude larger than
in the uniform ferromagnet case [96].

The question will be re-examined in the last section for planes where 3D ordering
due to the dipolar interaction might occur before 2D ordering.

7.3.2 3D of 1D – Bunching of Wires or Chains

The study of the rhombic lattice of point dipoles presented above can be easily
extended to that of magnetic lines perpendicular to the xy plane. The dipolar in-
teraction energy between two parallel lines can be analytically calculated within a
continuous approximation. It yields the average field – tensor – on a line due to the
other one:

[B] =
{µ0

4π

} σ

al
· 2(α − 1)

·
[

(2 + 1/α) cos2(ϕ) − 1 (2 + 1/α) sin(ϕ) cos(ϕ) 0
(2 + 1/α) sin(ϕ) cos(ϕ) (2 + 1/α) sin2(ϕ) − 1 0

0 0 −1/α

]
(8)

where σ is the linear magnetization density in the line, l the line length, a their
distance and α =

√
1 + (l/a)2. The angle ϕ is that of the vector bonding the two

lines in the xy plane. ϕ could be set to 0, but its is convenient to keep it explicitly
for calculations on a lattice. This expression reduces, of course, to the usual Eq. (1)
for l = 0 (using σ = µ/ l).

For an infinite length l it reduces to:

[B] =
{µ0

4π

} 2σ

a2

[
(2 cos2(ϕ) − 1) (2 sin(ϕ) cos(ϕ)) 0
(2 sin(ϕ) cos(ϕ)) (2 sin2(ϕ) − 1) 0

0 0 0

]
(9)

which corresponds to the true 2D dipole case.
For longitudinal magnetization (along the z axis) the dipolar coupling is anti-

ferromagnetic, as expected, and it vanishes when the length tends toward infinity.
However the magneto-crystalline anisotropy, and, particularly in this case, the de-
magnetizing energy of a single wire, may be much larger than the interaction be-
tween wires. As a consequence, after saturation in an external field, the wires may
remain in a metastable ferromagnetic arrangement even in zero field. In such a case
the magnetization reversal of a pair of wires takes place in two steps:

• the magnetization reversal of a first wire takes place in a smaller field than its
intrinsic coercive field because the stray field of the second one adds to the reverse
external field, and
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• after this first reversal the second wire reverses its magnetization in a larger field
than its intrinsic coercive field because the stray field of the first one now subtracts
from the reverse external field (or in other words the first reversal leaves the
system in the more stable antiferromagnetic state).

The argument extends to larger arrays of wires, which are expected to show jumps
and plateaus in the demagnetization curve, where each step corresponds to the mag-
netization reversal of an individual wire (see Section 7.3.3). For very large arrays, the
magnetostatic interaction between the wires should produce two effects: reducing
the overall coercive field compared to the one of a single nanowire) and increasing
the saturation field. These effects have indeed been observed by Raposo et al. [97]
for random bunches of cobalt nanowires (0.2 Ìm in diameter) electrodeposited into
the pores of alumina membranes (thickness 60 Ìm). Realistic Monte-Carlo and mi-
cromagnetic simulations have also been performed by the same authors leading to
qualitatively similar hysteresis loops as those obtained experimentally.

For transverse magnetization (in the xy plane), the dipolar free energy of a rhom-
bic lattice of infinite lines has been computed for different spin configurations as
shown in Fig. 5. In contrast with 2D arrays of point dipoles, the ground state is
antiferromagnetic for any angle ϕ of the rhombus for a cylindrical sample. As com-

Fig. 5. Dipolar free energy at 0 K of selected spin configurations (top) for a rhombic lattice
of infinite wires as a function of the rhombus angle ϕ. In contrast with the point dipole the
ground state is always antiferromagnetic (open symbols) for a bounded cylinder. However
if the demagnetizing energy (−π) is subtracted from that of the ferromagnetic states (down
arrow), a ferromagnetic order is predicted for 59◦ < ϕ < 75◦ (the full, dashed, and dotted
lines). This will be the case if the system can break into ferromagnetic domains.
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Fig. 6. Effect of the aspect ratio – controlling the demagnetizing energy – of a cylinder
cut out of a rhombic lattice of wires. Ground state spin configurations as a function of the
rhombus angle and the length/diameter ratio.

pared to the point dipole cases the destabilization of the ferromagnetic state is due
to the demagnetizing energy due to the discontinuity at the surface of the cylinder.
If this demagnetizing energy (1/2NM = π) is subtracted, the ferromagnetic state is
still marginally stable for 59◦ < ϕ < 75◦. Due to the intrinsic cylindrical symmetry
of the problem, the aspect ratio of the sample (length/diameter, L/D) determines
the relative stability of the polarized and not polarized spin configurations, which
results in the phase diagram shown in Fig. 6 as a function of the rhombus angle and
the aspect ratio L/D.

Experimentally, wires with a transverse magnetization are rather difficult to ob-
tain because the shape anisotropy, which favors longitudinal magnetization, usually
dominates. Some cases have been reported, though, [98] but, as far as we are aware,
there is no report about the dipolar interaction between bunches of such wires. The
theoretical results should also apply to the case of molecule-based magnets built
out of spin chains where the interchain separation is much larger than the spin–spin
distance in the chain (see Section 7.4.3).

7.3.3 2D of 1D – Planar Arrays of Magnetic Wires

The case of 2D arrays of wires with a longitudinal magnetization have been studied
by Sampaio et al. [99]. The experimental study has been performed at room temper-
ature for arrays of 2, 3, 4 and 5 microwires of glass-coated amorphous FeSiB with a
diameter of 5 Ìm and lengths from 5 to 60 mm. For such small arrays the magnetiza-
tion loops show very clearly the expected jumps and plateaus (Fig. 7). Monte-Carlo
simulations have been performed, which agree well with the experiment.

The case of 2D arrays of wires with a transverse magnetization has been stud-
ied mostly on nanostripes. Regular systems of parallel metallic nanostripes can be
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Fig. 7. Magnetization loop of a planar array of microwires (glass coated FeSiB amorphous
alloy) with easy longitudinal magnetization axis showing the steps associated with the suc-
cessive reversal of the individual wires (after Sampaio et al. [99]). Although the ground state
is antiferromagnetic, the anisotropy/coercivity of the wires keeps the system in successive,
polarized, metastable states.

prepared by deposition and growth of atomic thick layers onto a stepped (vicinal)
substrate made by miscleaving a single crystal at some small angle with respect to
one of the crystal axis [100, 101]. The easy magnetization axis is determined by
the preparation conditions, by the substrate and growth orientations and by the
thickness of the layers. By epitaxial growth of Fe on a vicinal W(110) substrate,
Gradmann and coworkers prepared densely spaced and continuous monolayer and
bilayer stripes of Fe(l10), directed along (001) [102, 103]. In this system the mag-
netic easy axis switches from being in-plane for a monolayer to being perpendicular
for bilayer stripes. Therefore, it is expected that monolayer stripes for which the
magnetization points towards the adjacent stripe interact ferromagnetically through
the dipolar interaction while bilayer stripes, for which the magnetization points in
the orthogonal direction, should be antiferromagnetically coupled.

Indeed, in case of transverse and out-of-plane magnetization (bilayer thick
stripes), the magnetization loops show the absence of hysteresis in combination
with a low saturation field, which strongly suggests that the magnetostatic inter-
actions induce antiferromagnetic order in the nanostripe array [102]. The dipolar
nature of the antiferromagnetic coupling is confirmed by the order of magnitude of
the saturation field that compares well with the dipolar stray field that one stripe
feels by interaction with all other stripes. The antiferromagnetic order between the
stripes has been confirmed by direct local measurements using spin-polarized scan-
ning tunneling spectroscopy [104].

The case of transverse and in-plane magnetization (monolayer thick stripes) has
also been investigated [103]. In this case the coupling is expected to be ferromag-
netic. However, unlike bilayer and thicker stripes, isolated monolayer stripes do not
order magnetically. Yet, arrays of such stripes do exhibit a sharp phase transition
at TCexp ≈ 180 K to ferromagnetic order, free from relaxation, i. e. it is not a mere
freezing of superparamagnetic objects (Fig. 8). The resulting ferromagnetic phase
transition is therefore driven by the dipolar interaction between the stripes. The
onset of the ferromagnetic ordering can be summarized as follows. Even though a
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Fig. 8. The sharp ferromagnetic transition observed in a planar array of stripes (Fe on a
vicinal W substrate) with in-plane and transverse easy magnetization axis (after Hauschild
et al. [103]. Isolated stripes do not show long range magnetic order. The long-range ordering
is because of the dipolar coupling (ferromagnetic in this case) between the stripes. Symbols
show the temperature dependence of the magnetization measured by Kerr effect and the
dotted curve show what would be the result of a mere freezing of the magnetization in an
assembly of non-interacting stripes.

single stripe does not order at finite temperature, the exchange interaction is re-
sponsible for the formation of correlated spin blocks the size of which diverges
exponentially with decreasing temperature [105]. The dipolar interaction between
such spin blocks in adjacent stripes also diverges exponentially and the phase tran-
sition takes place when the block length reaches some critical length. Following this
idea, the authors have computed TC within a mean field approximation, which they
have found to agree quite well with the experimental observation (TCth ≈ 1.1TCexp).
This situation will be treated in more details in the last section of the chapter (Sec-
tion 7.4.3).

7.3.4 2D of 0D – Planar Arrays of Magnetic Dots

As indicated above planar arrays of point dipoles exhibit in plane ferromagnetic
order for compact structures (ϕ < 78◦) and antiferromagnetism (or a spin rota-
tor state) for the less compact ones (and the square lattice). This theoretical re-
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sult must obviously be re-considered for objects (or moments) where either shape
or magneto-crystalline anisotropy is present. Particularly if the anisotropy favors
a magnetization perpendicular to the plane of the lattice it is easy to understand
that the dipolar interaction favors an antiferromagnetic configuration for the square
lattice and that it is frustrated in case of triangular lattice.

Arrays of micron size perpendicularly magnetized ultrathin cobalt dots with
20 nm separation were obtained by etching a Co/Pt multilayered thin film with a
focused ion beam. The surface magnetic anisotropy at the Co/Pt interfaces of these
multilayers favors an easy axis perpendicular to the plane of the square dots. It is
sufficiently large to overcome the shape anisotropy (demagnetizing energy) that
would favor an in-plane easy axis. The magnetic state of this regular square lattice
of squares has been studied by Ferré and co-workers using polar magneto-optical
microscopy [106]. Frustrated checkerboard patterns are observed in the demagne-
tized state (Fig. 9). The checkerboard patterns agree with the expected antiferro-
magnetic order. The regions of frustration are actually antiphase boundaries which
are formed where two antiferromagnetic domains of opposite phase merge during
the demagnetization process, in agreement with numerical simulations performed
in the same study.

The magnetic order in 2D arrays of nanometer-sized superparamagnets has
also been studied by Scheinfein and co-workers [107]. In this study random two-
dimensional island assemblies have been grown on an insulating CaF2 substrate
with a variable coverage. Despite some degree of randomness, the islands exhibit
a narrow distribution of sizes and the arrays are rather compact. For low coverage
the aspect ratio of the island (L/D > 0.75) and, therefore, the shape anisotropy
are such that the easy magnetization is perpendicular to plane. In such a case a
random, frustrated, antiferromagnet is expected although no direct evidence has
been given except the absence of hysteresis in the magnetization loops. For large
coverage the islands become flatter, the easy magnetization axis switches to being

Fig. 9. Magnetic pattern observed by
magneto-optic microscopy on a demag-
netized square planar array of dots
(Co/Pt multilayers) with easy magnetiza-
tion axis perpendicular to the plane (af-
ter Aign et al. [106]. The checkerboard
patterns are characteristic of the anti-
ferromagnetic dipolar coupling between
the dots. The frustrated regions between
them are antiphase boundaries that form
when domains out of registry merge dur-
ing the demagnetization process.
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in-plane and eventually the array becomes ferromagnetic at room temperature de-
spite the fact that isolated islands should still be superparamagnetic. Mean field
calculations and Monte-Carlo simulations have been performed using a fully fea-
tured dipolar Hamiltonian – including all the geometrical aspects – which are in
agreement with the experimental observations. As usual the critical temperature
estimated within the mean field approximation is about twice that determined by
the Monte-Carlo simulations. However, the simulations show that the ferromagnetic
order is not long-range as the correlation length is still finite below the “ordering”
temperature because of the disorder and the average magnetization decreases when
increasing the number of islands over which the average is taken (see also Fig. 4).

7.3.5 1D of 0D – Lines of Magnetic Dots

The possibility to achieve room temperature dipolar ferromagnetism has also been
demonstrated by Sugarawa and Scheinfein [108] for linear arrays of Fe particles
with radii larger than 2.5 nm. Quasi 1D Fe particle arrays have been prepared by
self-organized shadow growth on regularly faceted NaCl (110) surfaces. Surface
magneto-optic Kerr magnetization curves indicate easy-axis alignment along the
rows of particles. Remanence and coercivity have been found to depend strongly
on the particle diameter and linear island density. It is clear, however, that closely
packed linear arrays can exhibit remanence and coercivity at temperatures where
the isolated particles are superparamagnetic with a relaxation time shorter than
microseconds. The experimental observations have been compared to those pre-
dicted by a Monte-Carlo simulation with no free parameters. The computed hys-
teresis loops accurately reproduce the results of the experiment (Fig. 10). Despite
the disorder and unlike in the 2D array case (Section 7.3.4) the computation predicts

Fig. 10. Magnetization loops observed at room
temperature for parallel arrays of dotted lines (Fe
on a faceted NaCl substrate) with different sizes
and densities (after Sugarawa and Scheinfein [108].
Average dot diameter/height/spacing, from top to
bottom: 70/10/90, 50/6/90, 30/3/70 in Å. For the
larger and denser dots (top) a dipolar ferromag-
netic order is observed at room temperature. The
full lines are the strikingly similar results of pa-
rameter free Monte-Carlo simulations, taking into
account the actual geometry of the samples.
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global ordering along the rows through the dipolar interaction. This is attributed to
the strong symmetry breaking in the plane. Except for the distribution of sizes and
distances this ordering is understood in the frame of the rhombic lattice for small
angle values (Section 7.2.4.2 and Fig. 3).

7.4 Weakly Correlated Extended Systems

This section addresses the question of ferromagnetic 3D ordering in systems ex-
hibiting ferromagnetically exchange-coupled sub-networks – chains or layers – only
interacting through dipolar coupling. A similar problem has already been sketched
in Section 7.3.3 for planar arrays of nanostripes but here the focus will be put on
molecule-based magnets, usually characterized by magnetic interactions of the order
or less than kBT in the temperature range of interest, so that temperature depen-
dent dipolar effects must be considered. The possibilities to achieve in such systems
high temperature ferromagnetic ordering will be demonstrated.

7.4.1 Low Dimensional Molecular-based Magnets

Molecule-based or polymeric magnetic materials are of great interest from a mag-
netic point of view even if the spatial extension of molecules induces low spin density,
typically a few percent of that of metal-based magnets. The assembling of molecular
species in a controllable fashion offers the opportunity to prospect new extended
systems with predictable properties [109].

Ferromagnetic coupling is significantly less prevalent in nature than the antifer-
romagnetic one – unpaired electrons in orthogonal orbitals, residing in the same
spatial region, are required – so that research on fully ferromagnetic compounds
remains challenging [110]. The occurrence of a net moment necessitates significant
interactions between neighboring molecules (0D) in all three directions of the solid.
This is a major hurdle for compounds whose cohesion arises from weak intermolec-
ular interactions, such as van der Waals or hydrogen bonds. As a result, many studies
have been devoted to units of higher dimensionality (1D or 2D) characterized by a
ferro- or ferrimagnetic exchange coupling, with the aim of constructing, through a
self assembling of the exchange-coupled units, a 3D hopefully ferro-or ferrimagnetic
network. This strategy has led to significant increase of the ordering temperatures,
but the real mechanism of the long-range order is not always well established. A net
moment may also be observed when interchain or interlayer interactions compete
with non-collinear single ion anisotropies, giving rise to a canted antiferromagnetic
structure. Of course, in that case, the net magnetic moment will be of reduced mag-
nitude, as compared to that of the ferromagnetic chains or layers.

Another approach, albeit counterintuitive, is to minimize the antiferromagnetic
interchain or interlayer exchange to the point of being negligible, leading to the
coupling being dominated by the weaker – but potentially ferromagnetic – dipole–
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dipole interactions. As will be seen, by incorporating large exchange in one or two
directions, sizeable TC values can be achieved despite the weakness of the dipole–
dipole interactions between chains or layers.

Note that as early as 1970, thorough investigations of the TMMC-based linear
compounds (TMMC = (CH3)4NMnCl3)) have pointed out a 3D antiferromagnetic
order near 1 K, likely due to the dipole interactions between radical chains [111].
Similarly, the long-range ordering around 8 K in MnII(hfac)2NITR (hfac = hexaflu-
oroacetylacetonate; NITR = 2-R-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, R
= ethyl, isopropyl, n-propyl), consisting of spin-5/2 manganese(II) ions alternating
with spin-1/2 radicals, was ascribed to the same mechanism [112]. The authors have
calculated the interchain dipolar interaction from the point dipole approximation,
by neglecting thermal effects which induce a reduction of the magnetic moment.
Considering the crude nature of the model, a quite good agreement between theo-
retical and experimental TC values was obtained for spins orientated perpendicular
to the chain axis.

7.4.1.1 Mn-porphyrin-based 1D Systems

An important class of 1D molecular compounds is the family of charge-transfer
complexes based on metalloporphyrin and TCNE (TCNE = tetracyanoethylene)
reported by Miller et al. [113, 114]. It is exemplified by [MnTPP]+[TCNE]− · 2PhMe
(TPP = tetraphenylporphyrin) which has a chain structure, with Mn(III)-porphyrin
cations (donors, D) bonded to [TCNE]− anions (acceptors, A), according to
· · ·D+A−D+A−· · ·. The S = 2 Mn(III) is in axially distorted octahedral environment,
with S = 1/2 [TCNE]− being located on each side, around 2.30 Å apart (Fig. 11).
Because of the covalent bonding between the two spin-carrying units (SMn = 2 and
Srad = 1/2) along the chain axis, this class of compounds magnetically order with
TC ≤ 28 K. Hence, [MnTPP]+ [TCNE]−· is a prototype for studying 1D magnetism
and related phenomena.

The magnetic properties are well dominated, over a wide temperature range,
by the antiferromagnetic coupling between Mn(III) and [TCNE]− radical giving
1D ferrimagnetism, but low temperature investigations show intriguing behavior.
Unlike the behavior expected for isolated chains, which only order at absolute zero,
a metamagnetic ground-state and a transition towards a long range ferromagnetic
state, with a net magnetic moment, are observed below a critical temperature TC =
13 K [113].

Because of the relative ease of modifying the porphyrin structure, series of substi-
tuted tetraporphyrin TCNE electron transfer salts have been investigated to analyze
the structure–property relationship and the mechanism of the magnetic ordering.
Several papers have appeared reporting how TC and the magnetic properties change
when using:

• other cyanocarbon acceptors connecting the Mn(III) ions [115, 116];
• bulky substituents at the periphery of the porphyrin cation keeping the chains

apart [117].
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Fig. 11. Schematic structure of
the charge transfer complex
[MnTPP][TCNE].2PhMe where
TPP = tetraphenylporphyrin,
TCNE = tetracyanoethylene.
The Mn–Mn distance along the
chain (repeat unit) is 10.12 Å,
while the distances between
parallel chains along the two
other crystallographic direc-
tions are 11.01 and 12.50 Å.
These distances increase up to
31.2 Å when long chains R =
OCnH2n+1 are grafted at the
periphery of the porphyrin disk.

At high temperatures, all these compounds exhibit 1D ferrimagnetism with
χT (T ) well described by a classical-quantum spin model [118]. The temperature
at which the characteristic minimum of χT (T ) occurs −80 K to more than 300 K
– indicates unambiguously that the in-chain interaction is strong, typically −115 K
for the non-substituted compound up to −225 K for the fluorine derivative [119].
Upon cooling down, the magnetic susceptibility, and also χT (T ), shows a steep
raise which in fact deviates from the isolated chain prediction, then a sudden drop
pointing to a phase transition towards a 3D state. The observed TC (or TN) val-
ues are closely related to small changes in the [MnTPP]+ species and the nature
of crystallization solvent. For example, in [MnTPP][TCNE](solvent), the interchain
interactions are ferromagnetic with TC ranging from 13 to 8.5 K for toluene, o-xylene
and o-dichlorobenzene solvents, while for [MnOEP][C4(CN)6] (OEP = octaethyl-
porphyrinato) the interchain coupling is antiferromagnetic with TN = 22 K [115].

Using a different strategy, Haase and coworkers have attempted to minimize
the interchain exchange interactions by linking long alkoxy chains R = OCnH2n+1,
with n = 10–14, to the phenyl groups of porphyrins (Fig. 11). Although the distance
between magnetic chains is increased up to 31.2 Å, the ordering temperature is not
significantly affected, TC varying from 21.7 K for n = 10 to 20.5 K for n = 14 [120].
The AC susceptibility data, characterized by an out-of-phase signal at TC, and the
large coercive fields observed at lower temperature – up to 3600 Oe at 5 K – confirm
the stabilization of a ferromagnetic state (Fig. 12).
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Fig. 12. Temperature-dependence
of the AC susceptibility of the
[MnTPP][TCNE]-based complex
with OC14H29 substituted in the
p position on each phenyl group
to favor large separation between
magnetic chains. The observed
out-of-phase signal, and the large
coercive field observed at 5 K
demonstrate the ferromagnetic
3D character of the transition.

Remarkable results on the magnetic properties of Mn-porphyrin-based com-
plexes were further reported by Wynnet al. [121–123]. Assuming that the quan-
tum “through bond” exchange between neighboring chains is negligible – this is
supported by distances larger than 9 Å – the authors proposed a mechanism of
“through-space” dipolar interaction together with single ion anisotropy as being
responsible for bulk magnetism at low temperature. The interchain dipolar interac-
tion is estimated from the point dipole model with spins in registry between neigh-
boring chains. The interaction strength is typically a few mK for the most favorable
cases. Due to the presence of two interchain separations, the authors deduced that
the interaction is ferromagnetic in one direction (along the shortest interchain dis-
tance) and antiferromagnetic in the second direction. Hence, in the absence of local
anisotropy, the resulting system would be antiferromagnetic. In order to explain the
existence of a net magnetic moment in the system they invoked a canting of the spins
due to the presence of Mn(III) single ion anisotropy resulting in a canted antiferro-
magnet (or weak ferromagnet) [24]. The ordering temperatures have been calculated
from estimated values of the dipolar interaction and the relationship developed for
anisotropic exchange interaction [124]:

kBTC = 4S(S + 1)[Jintra Jinter]
1/2 (10)

where S is the net spin of a repeat unit (S = 3/2), Jintra the in-chain exchange
interaction and Jinter the dipolar interaction along the transversal directions. The
resulting TC values (∼ 8 K) compare favorably with those observed experimentally.
This model clearly emphasizes that bulk magnetic ordering with substantial TC val-
ues can be achieved in chain systems, resulting from dipole–dipole interactions.

It should be noted that:

• The presence of single ion anisotropy is not needed to obtain a net magnetic
moment in such systems. As shown in Section 7.3.2, there exists a range of an-
gles of the chain lattice (i. e. of the ratio between the short and long distance be-
tween chains) for which the ground state is ferromagnetic (at least multi-domain).
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This implies that a large net moment may also be obtained, although the on-site
anisotropy can lead to a canted ferromagnet.

• The Jinter value has been calculated for individual spins, neglecting collective ef-
fects arising from the intra-chain correlation on the magnitude of the inter-chain
dipolar coupling. A mean field-type argument for estimating the 3D ordering
temperature for weakly coupled systems provides insight into the interchain or
interlayer interactions. According to Villain and Loveluck [125], long-range or-
dering is achieved when the thermal energy is comparable to the interaction
energy between correlated spin blocks of size η namely:

kBTC = z| j |S(S + 1)η(TC) (11)

As will be seen in Section 7.4.2, this mechanism reinforces the influence of the
dipolar effects and can explain the high TC values observed in low dimensional
systems with very large separations between magnetic species.

7.4.1.2 Hydroxide-based 2D Systems

The metal hydroxides made of regular 2D arrays of metal ions coordinated by hy-
droxyl groups are considered as good prototypes of layered magnetic systems. The
parent compounds M2(OH)3A (M = Co, Cu), involving the coordinating species A
= NO−

3 or OAc−, exhibit a similar structure with the M2(OH)3 layers separated by
A− anions and held together through hydrogen bonds [126]. The in-plane metal–
metal separations remain close to that of hydroxides (∼3.15 Å), whereas the sub-
stitution of OH− by larger anions induces a significant increase of the interlayer
spacing (from 4.6 Å for the hydroxide up to 9.3 Å for the acetate). Ferromagnetic
in-plane interactions dominate the high temperature behavior, while in turn 3D an-
tiferromagnetism is stabilized at low temperature, due to small interlayer exchange
involving hydrogen bonds [127].

Significant progress in the understanding of the low temperature prop-
erties has been achieved by studying the series of n-alkyl carboxylates
Cu2(OH)3(CmH2m+1COO) (m = 1 to 12) [128–130]. The distance between
layers is mediated by the length of the n-alkyl chains, according to the relation
d(Å) = d0 + 2.54m cos(θ) available for double organic layers (Fig. 13). The tilt
angle of the chains θ with respect to the normal to the layers is 22◦, while the
interlayer spacing increases from 28.8 to 40.7 Å, for m = 7 to 12, respectively.

The magnetic behavior of Cu(II) n-alkyl carboxylate compounds, illustrated in
Fig. 14 for n = 10, is representative of the long-chain compounds. The AC and
DC (H = 10 Oe) susceptibilities increase strongly on decreasing temperature, and
reaches a sharp maximum and a plateau, respectively, limited by demagnetizing
effects, near TC = 20.5 K where ferromagnetic order sets in. The occurrence of a
long range magnetic state is confirmed by an out-of-phase (χ ′′) signal, and at lower
temperature a hysteretic effect (Hc = 1500 Oe at 2 K). Both the magnitude of the
net magnetization and its variation in high fields point towards a ferrimagnetic or a
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Fig. 13. Packing of the metal hydroxide
monolayers and organic chains in the hybrid
compounds Cu2(OH)3(CmH2m+1COO).
The interlayer spacing is mediated by the
number of carbon atoms (m) and the tilt
angle of the chains.

Fig. 14. Temperature dependence of the AC (open circles) and DC (squares) susceptibilities
for the layered organic–inorganic compound Cu2(OH)3(C10H21COO). The broad minimum
of χT (T ) observed in the inset is the signature of a ferrimagnetic or non-collinear spin
configuration within copper(II) layers. The full line represents the best fit from the sum of
two Arrhenius-like contributions (see text).

non-collinear spin configuration. Such systems show similarities with the copper(II)
weak ferromagnets, CuCl4(CmH2m+1NH3)2 (m = 1 to 16) [131].

Another characteristic feature is the presence of a broad minimum in the tem-
perature dependence of χT (T ), well above TC (inset in Fig. 14). This thermal be-
havior is very well approximated by a double exponential law C1 exp(α J/kBT ) +
C2 exp(β J/kBT ) [132]. The driving interaction, responsible of the initial high tem-
perature decay of χT is antiferromagnetic (α J/kB = −40.47 K). It is attributed
to the dominant in-plane interaction. Conversely, the low temperature behavior of
χT is dominated by the second term (β J/kB = 126.8 K) that is appropriate for
a 2D Heisenberg ferromagnet [133]. Note that, in the above expression, the sum
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Fig. 15. Variation of (χT )F vs 1/T for Cu2(OH)3(C10H21COO) showing the departure from
the high temperature Arrhenius law (2D regime) below 30 K. The law temperature behavior
is well fitted by the power law χT = 0.40(1 − 21.05/T )−1.36 indicating a transition to a 3D
state.

C1+C2 = 0.807 is the high temperature Curie constant for two Cu(II) ions (S = 1/2)
per formula. The same conclusion can be drawn for the other members of the cop-
per(II) series with large m values.

In order to know more about the nature of the phase transition, these systems
have been studied in the framework of a “generalized scaling” theory [132]. A spec-
tacular crossover of the ferromagnetic component to the susceptibility from a 2D
to a 3D regime is evidenced by the Arrhenius plot log(χT ) vs 1/T (Fig. 15). At
high temperature, the exponential variation characteristic of a 2D Heisenberg sys-
tem is evidenced by a straight line down to T ≈ 30 K, then upon further reduction
of the temperature a sudden departure from linearity occurs and the system obeys
the power law χT = 0.40(1 − 21.05/T )−1.36 characteristic of a 3D regime with
TC = 21.05 K.

Finally, these layered compounds are noteworthy at least from two points of view:

• as model systems for elucidating the key role of organic spacers on the magnetic
properties; the through-bond interlayer interactions being negligible for d >10 Å,
a model of dipolar interactions must be considered; and

• for the development of what is called multi-property materials, namely systems
in which at least two basic properties coexist, and possibly interact [134].

7.4.2 3D Ordering Due to Dipolar Interaction – A Model

The kind of dipolar ordering that may occur in widely spaced layered or chain com-
pounds is formally understood along the lines discussed in Sections 7.3.1 (planes)
and 7.3.2 (wires). However, the formal calculation of the ordering temperature is
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still in its infancy. As compared to the cases treated in Section 7.3, an additional dif-
ficulty arises, namely, the chains or planes, are not fully magnetized, i. e. they are not
even superparamagnetic. They are composed of correlated spin blocks (SB) whose
correlation length is temperature dependent. Following the above mentioned work
of Villain and Loveluck [125] long range 3D ordering can be expected when the
thermal energy is comparable to the dipolar energy between these spin blocks. To
our knowledge the problem has only been treated within a modified version of the
mean field approximation independently by Gradmann and coworkers [103] for 2D
arrays of nanostripes (Section 7.3.3) and Drillon and Panissod [135] for layered hy-
brid organic–inorganic compounds. More recently the ordering of chain compounds
has also been understood within the same approach [136]. The case of layered com-
pounds is examined herein as an example of the approach.

Consider a 2D square lattice of spins S = 1/2 coupled by an isotropic ferro-
magnetic exchange interaction. At absolute zero the magnetic layer exhibits a fully
ferromagnetic alignment of the spins but upon increasing temperature, the spins
become only correlated at a finite distance ξ . For such a 2D Heisenberg ferromag-
net, ξ is related to the exchange constant J and the spin value S by the relationship
[133]:

ξ2 = (J S/kBT ) exp(4π J S2/kBT ) (12)

Despite the fact that the dipole interaction between individual spins lying in dif-
ferent layers is very small, the dipole interaction between correlated spins of size ξ2

becomes sizeable as the temperature decreases and that it leads to 3D order when
the in-plane correlation length reaches a threshold value.

To model its spin block structure each plane is considered at a non-zero temper-
ature as a checkerboard made of square blocks containing ξ2 parallel – correlated
– spins S. The net moment of each spin block is ξ2gSµB = ξ2µ and is assumed
oriented anti-parallel to its neighbors thus prefiguring a multidomain structure in
the 3D ordered state. It must be emphasized that the finite size of these domains
is essential since the dipole–dipole interaction between uniformly magnetized infi-
nite planes is virtually zero. Accordingly, the expected transition is not towards a
uniform ferromagnet but a multidomain one (unless the size of the sample grains
is small).

The average dipolar field acting on a spin block and arising from adjacent layers
(AL) is then calculated as follows:

Bdip = {µ0/4π}〈µ〉T(1/ξ2)
∑
i∈SB

∑
j∈AL

[3 cos2(θi j ) − 1]/r3
i j (13)

which takes into account the spin fluctuations through the thermal average of the
moment, 〈µ〉T and the spatial extension of the spin block through the first sum over
its ξ2 individual spins. In the frame of the mean field approximation, this dipolar
field acts on the moment ξ2µ of the spin block as a whole and the linearized Eq. (5)
is:

〈µ〉T/µ = ξ2µBdip/3kBT (14)
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Fig. 16. Mean field calculation of the 3D ordering temperature for a tetragonal lattice of spins
1/2 where the intralayer exchange coupling is ferromagnetic and the interlayer coupling is
purely dipolar. The ordering temperature depends mostly on the intralayer exchange strength
J and only logarithmically on the dipolar energy µ2/a2c. The reason is the exponential
divergence at T = 0 of the in-plane coherence length ξ ≈ exp(J/kBT ) which makes the
effective interacting moments to diverge also exponentially [135]. A similar behavior is
expected for 3D chain compounds in the presence of magnetic anisotropy (Ising-like spins).
For Heisenberg spin chains the power law divergence of the coherence length results in
much lower ordering temperatures (typically 0.1 J) [136].

Equations (13) and (14) are solved self-consistent for a layered tetragonal system,
using the thermal evolution of ξ given by Eq. (12). This yields the J/kBTC plot as
a function of the intra-plane exchange constant J and the lattice parameters a and
c (Fig. 16).

Hence:

• For reasonable values of the exchange interaction and lattice constants, the ratio
J/Edip = Ja2c/µ2

B lies in the range 103–106, and the critical temperature ranges
from 0.7 J/kB to 0.3 J/kB. The model predicts 3D ordering temperatures close to
the intra-layer exchange energy even though the base interlayer dipolar energy
is orders of magnitude lower. Such a behavior is very similar to that found for 2D
systems with a weak interlayer exchange coupling j , the transition temperature
of which is given by kBTC/J = 4/ ln(J/j) [137].

• It may be argued that the mean field approximation overestimates quite generally
the ordering temperature by a factor up to 2. However, the proposed model dif-
fers substantially from the standard mean field approximation in that the thermal
variation of the interaction energy ξ2µBdip is largely dominated by the exponen-
tially diverging size of the effective interacting moments ξ2(T )µ and depends only
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marginally on the thermal variation of 〈µ〉T. Therefore, the critical temperature
is mostly determined by the intralayer exchange constant through the rate of
divergence of ξ , while it varies only as the logarithm of the other parameters –
the lattice constants, the moment of the ions. Therefore the way Bdip is actually
estimated should not affect much the estimated value of TC and one can assume
that better approximations would yield very similar results.

• The calculation has been performed for a preferred orientation of the moments
perpendicular to the layers, which corresponds to the lowest dipolar energy and
favors a ferromagnetic order. In case of an in-plane preferred orientation, due
to single ion anisotropy, the ordered state is antiferromagnetic, Bdip is coarsely
divided by 2 but the TC is reduced by less than 10%.

• For Ising-like spins, the reduction of the degrees of freedom increases the calcu-
lated TC only by about 10%, whereas it would be multiplied by 3 in the standard
mean field approach.

The model has been used with success to explain the magnetic ordering of n-alkyl
copper(II) layered compounds with an interlayer spacing ranging from 28.8 to 40.7 Å
and TC values in the range 20 ± 1 K, respectively. The number of correlated spins
at TC is of the order of ξ2 ≈ 104. The weak dependence of TC upon the interlayer
spacing observed in these compounds is well explained by the weak influence of the
moment density. However, this weak dependence could also be considered as an
evidence for 2D ordering expected to occur for Ising-like systems [138]. Actually,
the analysis of the critical behavior of the magnetic susceptibility suggests, as seen
above, that the magnetic ordering is three-dimensional [132].

There is no such ambiguity in chain compounds since 1D ordering cannot be
stabilized, except at absolute zero. Recently the same model, adapted for chains, has
been used to explain the ferromagnetic ordering observed in Mn-porphyrin-based
magnets exhibiting ferrimagnetic chains well separated in space (up to 31.2 Å apart)
and arranged on a triangular lattice [136]. The case of chains system calls for two
remarks, though:

• As shown above (Section 7.3.2) the dipolar interaction favors uniform ferromag-
netic ordering only for chains of limited length. Therefore, when the coherence
length diverges within the chains, the dipolar coupling becomes antiferromag-
netic (or multidomain ferromagnetic).

• The divergence of the coherence length in 1D systems obeys an exponential law
only if some anisotropy is present. For 1D Heisenberg systems, the coherence
length is rather described by the power law |J |S(S + 1)/kBT [138].

Hence, the calculation of the ordering temperature has been performed for
both ferromagnetic and antiferromagnetic inter-chain configurations and for both
Heisenberg and Ising exchange coupling within the chains. In all cases the order-
ing occurs when the coherence length reaches ξ ≈ 104 repeat units. Owing to the
number of correlated spins at TC, it results that the interaction between strongly
correlated spin blocks is essential to promote 3D ordering. The calculated TC is five
times larger in the Ising model than in the Heisenberg model because of the much
slower divergence of ξ in the latter case. In fact, the calculated TC agrees with the
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experiment only for Ising-like spins, which is not surprising for Mn(III) ions be-
cause of the Jahn–Teller effect and which is also in agreement with the rather large
coercive field observed on the magnetization loops [136].

As to the type of magnetic order below TC the experiments point towards a
ferromagnetic ground state whereas energy minimization at TC suggests that the
ordered state is antiferromagnetic, because the length of the spin blocks is about
2000 times the interchain spacing (Section 7.3.2). This discrepancy can be explained
either because the system remains in a metastable ferromagnetic state favored by
the single ion anisotropy or because the system is actually in a multidomain fer-
romagnetic state (weak demagnetizing energy). It was shown in the same study
that a multidomain ferromagnetic spin configuration is even more stable that the
antiferromagnetic configuration.

Despite its crudeness, the proposed model shows that:

• 3D dipolar induced ordering can take place between chains or layers at tempera-
tures that depend essentially upon the in-chain or in-plane exchange interaction;
and

• a long range ferromagnetic order below a quite high TC can be stabilized.

It follows from these studies of chain or layered systems that the 3D magnetic
ordering is basically driven by the divergence of the correlation length (in 1D or
2D) as the temperature is lowered. From the same argument, it can be inferred
that an in plane long-range order, as for quasi 2D Ising systems, will automatically
entail a 3D ordering as soon as the inter-plane interaction j cannot be neglected; the
critical temperature for the 3D order will always be slightly larger than the critical
temperature for 2D ordering ( j = 0). More refined theories or simulations are
needed, though, to confirm these findings.

7.5 Conclusion

Although the dipolar interaction is usually ignored as exchange-coupling usually
dominates, it is shown in this review that it may have a key role in the nature of the
magnetic ordering in low dimensional systems, in particular for the design of high
TC molecular-based ferromagnets. This includes magnetic molecular materials made
of chains or layers, where the through space interactions are usually neglected, and
dense arrays of nanosized objects such as metal-based dots, wires or layers which
are in the forefront in the development of spin electronics, magnetic sensors and
magnetic recording media.

Unlike the exchange coupling, the dipolar interaction has a long range effect,
and an anisotropic character which in some cases makes difficult an accurate pre-
diction of the bulk properties. In addition, its influence over very large distances is
a limiting factor for investigating the fundamental aspects of individual magnetic
objects where a weak interaction is usually sought for.

In regard to molecule-based magnets, the reported substantial TC values may be
ascribed to dipolar interactions, thus adding another paradigm in addition to the
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overlap of magnetic orbitals, to design new molecule-based magnets. Unlike the
metal-based materials, the exchange interaction within molecular clusters, chains
or layers is relatively small so that the individual units are not fully magnetized at a
non-zero temperature. Nonetheless, the divergence of the coherence length as the
temperature decreases makes dipolar interactions much stronger than expected on
an isolated spin basis, this is essential to explain the observed 3D ferromagnetic
order in chain or layer systems. As a result, the TC values depend weakly on the
strength of the base (isolated spins) dipolar interaction, but essentially – and quasi
linearly – on that of the exchange coupling within the low dimensional units. Hence
significant progress can be made in the improvement of “molecule-based magnets”
and the physics of related systems.
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8.1 Introduction

The phenomenon of thermal spin transition (spin crossover) was first reported in
the literature some seventy years ago. Around 1930, Cambi and his coworkers ex-
amined the magnetic properties of a series of iron(III) dithiocarbamate complexes
and found that some of them showed a dramatic change of the magnetic moment,
from a value corresponding to five unpaired electrons near room temperature to
one corresponding to only one unpaired electron on lowering the temperature [1]. It
took then more than thirty years until, in the early sixties, the first iron(II) coordina-
tion compound, viz. cis-[Fe(phen)2(NCS)2] (phen = 1,10-phenanthroline) became
known also to exhibit temperature dependent spin transition (ST) between high spin
(HS) and low spin (LS) states near 175 K [2]. Many more examples of iron(II) spin
crossover (SC) compounds have been communicated soon after [3–22], and other
coordination compounds of 3d transition elements such as cobalt(II) [23–28], and
to a lesser extent cobalt (III) [29], chromium (II) [30, 31], manganese (II) [32–34],
manganese (III) [35–37], and nickel [38–40] were found to show similar thermal ST
phenomena. As is known from basic ligand field theory [41], complexes of 3d4 up
to 3d7 electron configuration in the approximation of Oh symmetry are capable of
undergoing thermal spin transition. Such complexes may adopt HS ground states
with weak field ligands (such as halogens, water, ammonia, etc.) or LS ground states
with strong field ligands (such as CN−, phen, etc.); for critical ligand field strengths
comparable to the spin pairing energy the spin state becomes temperature depen-
dent as a result of the Boltzmann distribution over all populated spin states. Thermal
ST is not expected for compounds of 4d and 5d transition elements, as the ligand
field strength increases markedly in comparison with analogous 3d compounds and
is generally much larger than the spin pairing energy; thus practically all 4d and 5d
transition metal complexes show LS behavior.

Looking back over four decades of SC research we notice that by far most of
the work was done with compounds of iron(II) [3–22] and to a lesser extent with
iron(III) and cobalt(II). The reason is mainly that with the development of 57Fe
Mössbauer spectroscopy a powerful technique has become available for the char-
acterization of the valence states [42], particularly for iron(II) compounds, where the
rates of spin state transitions are generally slower and thus relaxation times longer
than the Mössbauer time scale (∼10−7 s) such that the characteristic “fingerprint”
signals referring to the different spin states appear well resolved in the spectrum.
This is not the case in many iron(III) SC systems, where shorter spin state relaxation
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times fall into the Mössbauer “time window” and therefore broaden considerably
the resonance lines and make the analysis more difficult and less conclusive.

Research activities in the area of iron(II) SC systems have enormously increased
in recent years, stimulated by both the eagerness to explore more deeply the mi-
croscopic spin state switching processes and the hope of eventually applying such
materials in technical devices. The present review article is supposed to serve two
purposes, casting light on (i) cornerstones of the past and (ii) on new trends of SC
research in the forefront of present activities. We shall commence with a section on
physical characterization, where the specific information content of standard meth-
ods as well as of new techniques employed in studies of iron(II) ST phenomena
will be briefly reviewed.

8.2 Physical Characterization

8.2.1 Occurrence of Thermal Spin Transition

A transition metal compound exhibiting thermally induced ST necessarily under-
goes a drastic change in electronic configuration, favoring the HS states with increas-
ing and the LS state with decreasing temperature. For iron(II) complexes with six
3d electrons in the valence shell of the metal center, thermal ST is denoted, in the
“strong field approach” of ligand field theory [41, 43], as

(t2g)
6, LS ↔ (t2g)

4(eg)
2, HS (1)

where t2g and eg refer to the two subsets of d-orbitals split by a ligand field of Oh
symmetry. Within the “weak field approach” of ligand field theory, preferentially
used to interpret optical spectra, LS ↔ HS transition in iron(II) complexes is de-
noted as:

1A1g(Oh), S = 0 ↔ 5T2g(Oh), S = 2 (2)

where 1A1g and 5T2g refer to the Mulliken ligand field terms under Oh symmetry, and
S to the total spin quantum number. It should be mentioned that the spin triplet
states (S = 1) are thermally not accessible, which is clearly seen in the Tanabe–
Sugano diagram for d6 complexes (Fig. 1).

On thermodynamic grounds, thermal spin transition LS ↔ HS in a 3d6 complex
is expected, if the energy difference between the lowest vibronic levels of the 1A1
state, and that of the 5T2 manifold are comparable to thermal energy: �Eo

HL, cf.
Fig. 2.

It is noteworthy in this context that in the SC literature one often finds the state-
ment that thermal ST occurs if the difference between the ligand field strength and
the mean spin pairing energy is on the order of thermal energy. At a critical value
of (10Dq)crit the Tanabe–Sugano diagram shows the crossover of the 1A1 and 5T2
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Fig. 1. Tanabe–Sugano diagram for an octahe-
dral d6 complex, calculated [17] with the Racah
parameters [43] of the free iron(II) according
to Tanabe and Sugano [48].
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~ k TB Fig. 2. Schematic representation of the potential
wells for the 1A1 and the 5T2 states of an iron(II)
SC complex. The condition for a thermal ST is
�Eo

HL ≈ kBT . The nuclear coordinate r(Fe–N)
refers to the Fe–ligand bond distance.

state. This value, which corresponds to a certain metal–ligand distance rcrit, how-
ever, is never met in a molecule. Instead, the bonding effects lead to a much higher
(by ∼0.2 Å) metal–ligand bond length in the HS state than in the LS state and cor-
respondingly lower 10Dq of ca. 12 000 cm−1 in the HS state and ca. 20 000 cm−1

in the LS state [41]. The bond length rcrit at which the adiabatic oscillator poten-
tials of the HS and LS state cross provides no direct information on the energy
separation of the minima of the two potentials. This energy separation has to be
compared with kT in order to observe thermal spin crossover. Therefore the lig-
and field picture is not adequate to describe the requirements for spin crossover.
Thus (10Dq)crit is a fictitious quantity of a non-existent compound. We can only say
that (10Dq)LS > (10Dq)crit > (10Dq)HS, where (10Dq)crit changes with r−6 [43]. A
deeper account of such ligand field considerations can be found elsewhere [17].

Thermal SC occurs in liquid solution as well as in the solid state. In liquids there
are practically no interactions between the spin state changing molecules. As a re-
sult, a plot of the molar fraction of the HS molecules as a function of temperature,
γHS(T ), which can be recorded for example by magnetic or optical measurements
(see Sections 8.2.2, 8.2.3), can be described by a Boltzmann population of the molec-
ular states. Considering only the electronic degeneracies, i. e. 15 for the 5T2g HS state
and 1 for the 1A1g state, this would result in a “saturation” molar fraction γHS of
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15/16 = 94% in the high temperature limit. In fact, in many SC compounds the ST
is practically complete, which is expected from a distribution over the vibronic man-
ifolds. Clearly, thermal ST is a molecular process and needs no cooperative interac-
tions. The driving force is the considerable entropy gain of ca. 50 to 80 J mol−1 K−1

on going from the LS to the HS state [44]. The total entropy change contains a spin
part, �Sspin = R[ln(2S + 1)HS − ln(2S + 1)LS], which is ca. 13 J mol−1 K−1 on going
from the LS (S = 0) to the HS (S = 2) state; this part contributes only 15 to 25% to
the total entropy gain. The main portion stems from the intramolecular vibrations
because of the much higher densities in the HS than in the LS state. The enthalpy
change of ST from the LS to the HS state in iron(II) compounds is typically 6 to
15 kJ mol−1 [14]. The difference in Gibbs free energy �G = �H − T �S becomes
zero at the temperature T1/2, where HS and LS molecules are present to 50% each.

In the solid state, there is coupling of elastic origin between the spin state changing
molecules resulting into more or less strong cooperative interactions. Such inter-
actions are responsible for the appearance of different shapes of transition curves
γHS(T ) as depicted in Fig. 3. They may be as gradual as in the liquid state, where
cooperative interactions hardly play a role. They may be very abrupt, or exhibit hys-
teresis or steps, and finally they may be incomplete in both high and low temperature
regions. More or less gradual transition curves are classified as “continuous” and
those exhibiting hysteresis as “discontinuous” spin transitions. The examination of
the shape of these curves is of the utmost importance in a SC study as they can
bear information on the existence of cooperative effects, the occurrence of hys-
teresis being the prerequisite for bistability and thus for eventual application of
the material in display or switching devices. Thermal ST in iron(II) compounds is
always accompanied by changes of magnetic, optical, and structural properties. In
the following we shall describe briefly how these changes can be followed using a
variety of standard methods and special techniques.

8.2.2 Magnetic Susceptibility Measurements

Measuring the magnetic susceptibility of a sample as a function of temperature,
χ(T ), has always been the main characterization method from the very beginning
of SC research up to now. The transition from the strongly paramagnetic HS state
with four unpaired electrons in case of iron(II) to the (nearly) diamagnetic LS state
with no unpaired electron is readily reflected in a dramatic change of the measured
magnetic susceptibility. χ(T ) is then determined by the temperature-dependent
fractional contributions of the susceptibilities of the molecules in different spin
states:

χ(T ) = γHS(T ) · χHS + (1 − γHS(T )) · χLS (3)

where γHS is the molar fraction of HS molecules as plotted in Fig. 3 as function
of temperature. χHS and χLS refer to the magnetic susceptibilities of the sample in
the pure HS and LS states (at sufficiently high and low temperatures of a complete
spin state transition), respectively. Only if these quantities are known, a ST curve
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Fig. 3. Schematic representation of the ST types: (a) gradual, (b) steep or abrupt, (c) with
hysteresis, (d) with steps, (e) incomplete. γHS(T ) represents the fraction of complex molecules
in the HS state (γHS(T1/2) = 0.5) [17].

γHS(T ) can be readily obtained. Otherwise the ST behavior can be followed quanti-
tatively by plotting the product χT as function of temperature, which deviates more
or less drastically from Curie law behavior in the ST region and may also unravel
special features like those exemplified in Fig. 3. Alternatively, one can also derive
the effective magnetic moment µeff = 2.83

√
χT [45] and plot it as a function of

temperature. The expected spin-only moment µs.o. = √
4S(S + 1) of the pure HS

state with S = 2 should level off at 4.9 B.M., while that of the LS state with S = 0
should be close to 0 B.M. The measured µeff values are often higher than the ex-
pected ones at both ends of the ST due to orbital contributions and zero-field split-
ting [45]. Because of these complications it has become more preferable to study
the ST behavior by plotting the γHS(T ) function rather than the magnetic moment
µeff(T ).

In practice, a variety of methods are being used to measure χ(T ) data: Faraday
balance, Foner vibrating sample magnetometer, AC and SQUID devices in solid
state studies, and Evans’ NMR method for solution studies. Techniques for studying
magnetic properties are described in [46]. The possibility of measuring χ(T ) data
down to 2 K under applied hydrostatic pressure up to 15 kbar has recently been
installed in a Foner magnetometer [47]; results from such measurements will be
alluded in Section 8.4.2.4.

8.2.3 Optical Spectroscopy

Thermal ST is always accompanied by a color change (thermochromism), e. g.
iron(II) complexes generally change from weakly colored in the HS state to more
deeply colored in the LS state. For example, tetrazole and triazole complexes of
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iron(II) are nearly white in the HS state and purple in the LS state. Therefore,
the optical spectrum in the UV/visible region differs drastically for the two spin
states and proves to be well suited to follow the ST qualitatively and quantitatively,
provided the absorption bands of interest are sufficiently resolved and not hidden
under more intense “spin crossover inactive” bands.

If a suitable single crystal of a SC complex is available, it is highly desirable to run
the optical spectra as a function of temperature in the UV/visible range between
300 and 1000 nm, where one usually observes the spin-allowed but parity-forbidden
d–d transitions (ligand-field bands), if they are not hidden by metal-to-ligand charge
transfer bands, which are spin- and parity-allowed and therefore much more intense
(by ca. 3 orders of magnitude) than the d–d bands. From the Tanabe–Sugano dia-
gram [48] for an octahedral d6 complex (in the approximation of Oh symmetry) as
shown in Fig. 1 one sees that the lowest ligand field term 1A1 arising from the 1I
Russell–Saunders term of the free ion crosses the 5T2 term, which arises from the
5D Russell–Saunders term, at Dq ≈ 1700 cm−1. In the region left of this crossover
point, the 5T2 term is the ground state, only one spin-allowed transition, namely
5T2 → 5E, can be expected here. To the right of the crossover point, 1A1 is the
ground state term; two spin-allowed transitions, viz. 1A1 → 1T1 and 1A1 → 1T2,
are predicted to appear in the UV/visible region at considerably higher energies
(wave numbers) than that of the HS absorption band. From the temperature de-
pendent area fractions of a well resolved absorption band one can easily construct
the ST curve. Examples will be given below. One can also perform reflectivity mea-
surements to follow the ST optically [49, 50] knowing that this technique provides
only qualitative results.

8.2.4 Vibrational Spectroscopy

In all SC complexes of 3d4 up to 3d7 transition metal ions, there is a depletion of
charge in the antibonding eg orbitals and simultaneous increase of charge in the
slightly bonding t2g orbitals on going from the HS state to the LS state. As a conse-
quence, a strengthening of the metal-donor atom bonds occur, and this should be
observable in the vibrational spectrum in the region between ∼250 and ∼500 cm−1,
where the metal-donor atom stretching frequencies of transition metal compounds
usually appear [51]. This energy change has been reinvestigated by new measure-
ments in this region and as a result, a new assignment could be proposed [52]. In
a series of temperature dependent far infrared or Raman spectra, one can readily
recognize the vibrational bands belonging to the HS and the LS species as those
decreasing and increasing in intensity, respectively, on lowering the temperature. Of
course, one can also derive the spin state conversion curve γHS(T ) by plotting the
normalized area fractions of characteristic HS or LS bands. Many examples have
been reported in the literature [53–56].

Vibrational spectroscopy has not only been employed to probe the metal donor
atom stretching frequencies during spin transition. Certain ligand vibrations have
also been found to be susceptible to change of spin state at the metal center. Typ-
ical examples are the N-coordinated ligands NCS− and NCSe−, which are widely
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used in the synthesis of iron(II) SC complexes to complete the FeN6 core like in
the “classical” system [Fe(phen)2(NCS)2]. The C–N stretching bands of NCS− and
NCSe− are found in the HS state as a strong doublet near 2060–2070 cm−1. On
cooling below the transition temperature (176 K), the intensity of this doublet de-
creases in favor of a new doublet appearing at 2100–2110 cm−1, which evidently
arises from the LS state [51]. This observation was interpreted as being due to in-
creased metal-to-ligand dπ –pπ back donation during HS → LS transition, which
however seems to be more pronounced for the Fe–N(phen) bonds than for the
Fe–N(NCS) bonds, because the bond lengths were found by X-ray diffraction on
[Fe(bipy)2(NCS)2] (bipy = 2,2′-bipyridyl) to shorten by ca. 0.15 Å in Fe-N (bipy), but
only by ca. 0.08 Å in Fe-N(NCS) [57]. Electron delocalization from the antibonding
C–N bond occurs to make up for the t2g electron deficiency at the LS iron center
caused by the enhanced metal → ligand back donation in the Fe–N(phen) bond;
this explains the shift of the C–N stretching vibrations by ca. 40 cm−1 to higher en-
ergy in the LS state. Such a strategy was recently applied to monitor the hysteresis
loop of [Fe(btr)2(NCS)2].H2O (btr = 4,4′-bis-1,2,4-triazole) [58].

Often the lattice constituents (cationic complexes, non-coordinated anions and
crystal solvent molecules) are all interconnected through hydrogen bonds, van der
Waals or other interactions. It is therefore conceivable that characteristic anion or
solvent molecule bands “feel” the spin state changes in the metal centers; they grad-
ually disappear at the favor of new bands growing in at different energy positions.
It has, for instance, been observed for [Fe(ptz)6](BF4)2 (ptz = 1-propyltetrazole)
focusing on the B–F vibration of the tetrafluoroborato anion [54]. Also recently, the
ST of [Fe(Htrz)3](NO3)2 (Htrz = 4-H-1,2,4-triazole) and [Fe{HB(trz)3}] (HB(trz)3}
= hydrotris(1,2,4-triazolyl)borate) were detected following the variation of the tor-
sional and stretching deformation vibrations of the triazole ligands [59, 60].

8.2.5 57Fe Mössbauer Spectroscopy

57Fe Mössbauer spectroscopy is a particularly elegant and powerful tool in probing
the valence states (oxidation and spin states) of iron compounds [42]. The isomer
shift δ and the quadrupole splitting �EQ, two of the most important parameters
derived from a Mössbauer spectrum, differ significantly between iron(II)-HS and
iron(II)-LS. The isomer shift δ is proportional to the s-electron density at the nucleus,
|�s(0)|2, and the difference R2

e − R2
g of the mean squared radius of the excited (e)

and the ground (g) state of the Mössbauer nucleus:

δ = 2
5
π Ze2

(
|�A(0)|2 − |�S(0)|2

)
(R2

e − R2
g) (4)

where |�(0)|2 denotes the charge density which is predominantly of s-character in
the absorber (A) and the source (S), respectively. In the case of iron(II), δ is more
positive for the HS state (∼1 mm s−1) than for the LS state (0–0.3 mm s−1) for the
following reason: due to the π -back donation of charge from the filled t2g orbitals of
iron(II) in the LS state into the ligand π∗-orbitals, the 3d electron density decreases.
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As a consequence, the shielding effect of the d-electrons for s-electrons (mainly 3s)
towards the nuclear charge decreases, which in turn increases the s-electron density
|�S(0)|2 at the nucleus. As the relative change of the nuclear volume on going from
the excited to the ground state of 57Fe, R2

e − R2
g, is negative, the higher electron

density at the nucleus causes a more negative shift of δ in the LS state compared to
the HS state. π -back donation from the HS configuration is not as effective, hence
the shielding effect of 3d electrons is greater and the s-electron density at the nucleus
decreases, which in turn causes a more positive isomer shift. Similar arguments hold
to explain the less positive isomer shift values (∼0–0.5 mm s−1) observed for HS
iron(III) as compared to HS iron(II) compounds: the lower d-electron population
in iron(III) causes less shielding and thus higher s-electron density at the nucleus
and consequently more negative shift of δ. Similarly, an iron(III) LS state gives
rise to a more negative δ value than iron(III) HS state because of enhanced dπ –pπ

back bonding effect yielding less shielding and therefore higher s-electron density
|�(0)|2.

An additional extremely helpful Mössbauer parameter for the characterization
of valence states is the electric quadrupole splitting �EQ. Electric quadrupole inter-
action arises only if there is a nuclear quadrupole moment eQ �= 0 and an electric
field gradient (EFG) q �= 0 [42c]. 57Fe possesses a quadrupole moment in the first
excited state (I = 3/2), but not in the ground state (I = 1/2). Therefore, in the
presence of an EFG q �= 0, the excited nuclear level splits into two sublevels, with
quantum numbers mI = ±3/2 and mI = ±1/2 in axial symmetry. This is the origin of
a quadrupole doublet in a 57Fe Mössbauer spectrum. The EFG may have contribu-
tions from a non-cubic arrangement of the ligand molecules (“lattice contribution”
to the EFG) and non-cubic distribution of the valence electrons (“valence electron
contribution”). Iron(II) HS compounds usually have a large quadrupole splitting
(near 3 mm s−1) due to a large valence electron contribution to the EFG; this arises
from a non-cubic distribution of the four 3d electrons over the t2g orbitals which
are split (e. g. into b2g and eg orbitals in a ligand field of D4h symmetry) due to
the Jahn–Teller distortion or non-cubic coordination of the ligands. The lattice con-
tribution arising from such an axial distortion is usually smaller than the valence
electron contribution (and often has opposite sign). The quadrupole splitting of
iron(II)-LS compounds is generally considerably smaller than that of iron(II)-HS
compounds, because the t2g orbitals, whether split or unsplit, are fully occupied by
the six 3d electrons; the partial contributions from each orbital add up to a vanishing
valence electron contribution, and what remains, for example in iron compounds
with ligands of different kinds or with bi- or multidentate ligand molecules, is a
lattice contribution to the EFG.

These typical Mössbauer parameters effectively give a fingerprint to each spin
state and enable one to distinguish between the spin states. When a thermally in-
duced SC in an iron(II) compound occurs, the intensity of the HS quadrupole dou-
blet decreases and that of the LS doublet increases as the temperature is lowered.
As an example, selected 57Fe Mössbauer spectra of [Fe(ptz)6](BF4)2 recorded as
a function of temperature are shown in Fig. 4 [54]. The outer two resonance lines
of each spectrum with decreasing intensity on lowering the temperature refer to
the iron(II) HS doublet. The signal in the middle represents the poorly resolved
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Fig. 4. Selected 57Fe Mössbauer spec-
tra of [Fe(ptz)6](BF4)2 as a function of
temperature [54].

quadrupole doublet of the LS sate, with increasing intensity on lowering the temper-
ature. The quantitative determination of the ST curve from a series of Mössbauer
spectra recorded over a certain temperature range is based on the evaluation of the
area fractions tHS and tLS of the resonance lines. The area fractions are proportional
to the products fHS ·γHS and fLS ·γLS, respectively, where fHS and fLS refer to the
so-called Lamb–Mössbauer factors (LMF) of the HS and the LS states, respectively.
Only for fHS = fLS can the area fractions of the HS and the LS resonance lines be
taken directly as a measure of the fractions of complex molecules in the HS and
the LS states, respectively:

For fHS = fLS → tHS/(tHS + tLS) = γHS (5)

The approximation of fHS ≈ fLS generally holds for SC compounds with contin-
uous spin transition. In case of discontinuous ST, fLS may be larger than fHS and
underestimates γHS(T ), particularly towards lower temperatures [61]; corrections
are then necessary.

8.2.6 Calorimetry

As with studies of phase transitions in general, calorimetric measurements (DSC or
Cp(T )) on SC compounds deliver important thermodynamic quantities and informa-
tion such as enthalpy and entropy changes accompanying a ST process, the transition
temperature and the order of the transition. The ST can be considered as a phase
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transition associated with a change of the Gibbs free energy �G = �H −T �S. The
enthalpy change �H = HHS − HLS is typically 10 to 20 kJ mol−1, and the entropy
change �S = SHS − SLS is of the order of 50 to 80 J mol−1 K−1 [14]. The thermally
induced ST is an entropy-driven process; the degree of freedom is much higher in
the HS state than in the LS state. Approximately 25% of the total entropy gain on
going from LS to HS arises from the change in spin multiplicity:

�Smag = R ln
(2S + 1)HS

(2S + 1)LS

and the major part originates from changes in the intramolecular vibrations [44].
The first precise heat capacity measurements were performed by Sorai and Seki

on [Fe(phen)2(NCX)2] with X = S, Se [44]. A few other SC compounds of FeII [62,
63], FeIII [64] and MnIII [35b] have been studied quantitatively down to very low
(liquid helium) temperatures. For quick, and only qualitative, information on �H ,
�S, the transition temperature, and the occurrence of hysteresis, DSC measure-
ments, although mostly accessible only down to liquid nitrogen temperatures, are
useful and easy to perform [65].

8.2.7 Diffraction Methods

Thermal ST in solid transition metal compounds is always accompanied by more or
less drastic positional changes in the crystal lattice. Continuous spin transitions al-
ways go along with changes in metal–ligand bond lengths and angles only (so-called
displacive transitions), but do not undergo changes in space groups. Discontinuous
spin transitions with hysteresis in the γHS(T ) curves are generally accompanied by a
change in space groups, that is show a first order crystallographic phase change with
major lattice reorganization (so-called reconstructive transitions). A crystal struc-
ture determination at variable temperatures above and below the ST temperature
is highly desirable when studying ST phenomena in solids. Even if a suitable sin-
gle crystal is not available for a complete structure determination, recording the
temperature-dependent X-ray powder diffraction data can be extremely helpful
in characterizing the type of ST (continuous or discontinuous), and determining
changes of the lattice parameters, which are needed for example to understand
pressure effects on spin transition [9]; in favorable cases one may even derive the
crystal structure from powder diffraction data using the Rietveld method [66].

Structural investigations have been carried out on many SC compounds mostly
by X-ray diffraction [10, 14]. One important finding in all cases is that the metal–
ligand bond length is longer in the HS state than in the LS state as is expected
from the depletion of charge in the antibonding eg orbitals and a simultaneous
filling of the slightly bonding t2g orbitals. In the case of iron(II) SC compounds this
bond length change is particularly large and amounts to ca. 10% (�rH L = rHS −
rLS ≈ 200–220 pm), which may cause a 3–4% change in elementary cell volumes
[14], as a consequence of moving two electrons from e∗

g to t2g orbitals. The bond
length change in iron(III) SC compounds, also with �S = 2 transitions, are less
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dramatic with only �rHL = 10–13 pm, because of an electron hole remaining in
t2g orbitals in the LS state. �rHL is even less pronounced in cobalt(II) SC systems
(�rHL ≤ 10 pm), because only one electron is transferred from e∗

g to t2g orbitals
in the �S = 1 transitions. The size of �rHL has important consequences for the
build-up of cooperative interactions which in turn influence decisively the spin state
relaxation kinetics (Section 8.3.8).

EXAFS (extended X-ray absorption fine structure) measurements have also been
successfully applied to the determination of the metal–donor atom bond length
changes in SC systems [67]. This method is increasingly applied in those cases where
X-ray diffraction becomes difficult or impossible because of highly dispersed par-
ticles or amorphous polymeric materials (see next section).

Another aspect of structural investigations relates to the bonding properties of
the SC molecules in the lattice. For example, single crystal X-ray diffraction can
reveal the pathways of existing hydrogen bonding networks or specific π -stacking
orderings. Such features, although not being a prerequisite for thermal ST to occur,
take part or even assist in the cooperative interactions involved in the spin transition.
This can be proven experimentally by studying the effect of deuteration or 14N/15N
isotope exchange on the γHS(T ) conversion curves (Section 8.3.1).

8.2.8 X-ray Absorption Spectroscopy

X-ray absorption spectroscopy (XAS) can be divided into X-ray absorption near
edge structure (XANES), which provides information essentially about geometry
and oxidation states, and extended X-ray absorption fine structure (EXAFS) which
provides information about metal site ligation [68, 69]. Although, XAS has not been
widely applied to follow spin state transitions, this technique is nevertheless ideally
suited, as it is sensitive to both the electronic and the local structure around the
metal ion undergoing the SC phenomena. Metal K-edges X-ray absorption fine-
structure spectroscopy (XAFS) has been used to study the structural and electronic
changes occurring during SC in iron(II) complexes [70–73], iron(III) complexes [74,
75], cobalt(II) complexes [67, 76, 77] and iron haem model compounds [78, 79]. In
addition, a few reports on the use of iron L-edge and cobalt L-edge XAFS are
available (Section 8.4.2.1) [80, 81]. The direct analysis of the near-edge structure
can afford the LS–HS composition ratios as a function of temperature and thus the
ST curve γHS(T ). Not only XANES spectra can be used to follow the electronic
modification occurring during SC, but also EXAFS can provide information about
the contraction of the first coordination shell around the active SC center. It is also
possible to obtain the HS and LS fractions as function of temperature [82].

The Debye–Waller factor σ plays an important role in EXAFS spectroscopy.
It is divided in two components σstat and σvib due to static disorder and thermal
vibrations, respectively. For a SC compound, σ is a measure of the vibrations of the
FeII ions with respect to the six donor atoms of the ligands around the metal ion.
It can also be used to monitor the ST curve as exemplified for [Fe(bpp)2](BF4)2
with bpp = 2,6-bis(pyrazol-3-yl)pyridine) [72].
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Several structures have been derived from EXAFS spectroscopy. This is the case
for instance for the iron(II)-1,2,4-triazole polymeric chain compounds (see Sec-
tion 8.4.1) [83–88]. Particular attention has been devoted to a peak situated at 7 Å
in the Fourier transform, which has been assigned to a multiple scattering double
metal–metal distance assuming an aligned polymeric structure [83]. This has been
convincingly proved by the observation of this peak for a CuII analog for which
the aligned crystal structure was known [85]. Later, this peak was observed at low
temperature in the LS and in the HS state for a SC compound [87] whereas it al-
ways vanished at higher temperature [83]. Actually, a local Jahn–Teller distortion
may be present together with an aligned metallic long chain, and the corresponding
EXAFS multiple scattering signal which is observed at low temperature, can vanish
just by an increase of its Debye–Waller factor [85, 87]. This does not confirm the
recent results obtained by wide-angle X-ray scattering (WAXS) supporting a zigzag
chain structure in the HS state for these materials [89].

EXAFS information is restricted to the first or second coordination sphere
around a central atom whereas WAXS can afford information on short and medium
range order up to 20 Å. It has been, for instance, applied to the polymeric chain ST
material [Fe(Htrz)2trz](BF4) with trz = 1,2,4-triazolato, in the LS and HS state. It
was found that the tetrafluoroborato anion may be bonded by hydrogen bonding
to the hydrogen in 4- position of the triazole ring [89]. However, no interaction
between the polymeric chains could be detected using this technique.

It is worthwhile mentioning that X-ray absorption spectroscopy has recently been
used to examine the LIESST phenomenon for some iron(II) complexes [90, 91]

8.2.9 Positron-annihilation Spectroscopy

Positron annihilation spectroscopy (PAS) was first applied to investigate the iron(II)
SC compound [Fe(phen)2(NCS)2] [92], soon after one found that the so-called
Doppler broadened energy distribution of the 0.511 keV annihilation γ -peak and
the lifetime of the ortho-positronium (o-Ps) atom changed upon adding ligand
molecules of different field strength to an aqueous solution of iron and cobalt
ions and thereby altering the spin state of the transition metal ion [93]. This tech-
nique was later successfully applied to study the SC behavior in single crystals of
[Fe(ptz)6](BF4)2 and zinc diluted mixed crystals thereof [94].

PAS is a nuclear technique, which usually uses 22Na as a positron (β+) source
“sandwiched” between two samples (e. g. single crystals) of the material under study.
This source/sample package can be mounted in a cryostat for temperature depen-
dent measurements. The emitted positrons of ca. 300 keV average energy enter the
material and are quickly slowed down to reach thermal energy. They collide with
electrons and will have a certain annihilation probability depending on the relative
orientations of the spins of the positron and of the electron. The formation of the
singlet state (opposed spins) is several hundred times more probable than that of
the triplet state (parallel spins). This relation obviously holds true also for the rela-
tive occurrence of the decay of these states via 2-gamma- and 3-gamma-annhilation,
respectively. It is also possible that a thermalized positron forms a (H-like) tran-
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sient bound system with an electron called a positronium (Ps) atom (e+e−), before
annihilation occurs. The lifetime of the singlet Ps (called parapositronium p-Ps)
is so short that no information can be extracted about interactions with the sur-
roundings. Instead, the lifetime of o-Ps is much longer even in condensed media
(ca. 500–1500 ps) and can be shortened by several processes such as:

• electron pick off with an alien electron;
• spin conversion from o-Ps to p-Ps in the presence of magnetic fields or param-

agnetic species; and
• chemical reactions with the substrate molecules and phase transformations.

The most important chemical information comes from the o-Ps lifetime as deter-
mined by the electron density in the medium. It has been demonstrated that PAS
spectroscopy can be used to signalize changes in electron density going along for
instance with ST or a thermally induced lattice deformation, which could actually
trigger a ST phenomenon [94, 95].

8.2.10 Nuclear Resonant Scattering of Synchrotron Radiation

Synchrotron radiation (SR) has in recent years developed to one of the most im-
portant tools in solid state research. It is polarized electromagnetic radiation of
unusually high brilliance and intensity, with frequencies ranging from infrared to
hard X-rays. Synchrotron radiation is produced in particle accelerators or storage
rings, when relativistic electrons are deflected in magnetic fields.

Beginning with the first successful observation of a resonant signal in a nuclear
scattering experiment with synchrotron radiation by Gerdau et al. in 1985 [96], the
so-called nuclear forward scattering (NFS) technique has been established as a pow-
erful tool to probe hyperfine interactions in condensed matter [97]. This technique
is related to conventional Mössbauer spectroscopy and even proves to have its out-
standing merits when the traditional Mössbauer effect experiments reach their lim-
its. As an example, the high brilliance of SR allows to perform NFS studies on very
small samples or substances with extremely small contents of resonating nuclei,
where conventional Mössbauer experiments are no more feasible.

NFS measurements have been carried out on iron(II) SC complexes with amaz-
ing success [98]. The time dependence of the NFS intensities yield typical “quantum
beat structures” for the HS and the LS states, the quantum beat frequency being
considerably higher in the HS state due to the larger quadrupole splitting than in the
LS state. The temperature dependent transition between the two spin states yields
complicated interference NFS spectra, from which the molar fractions of HS and LS
molecules, respectively, can be extracted using special computer programs. A com-
parison of the results with the data from conventional Mössbauer measurements
on the same sample gave excellent agreement between the hyperfine interaction
parameters. Admittedly, conventional Mössbauer spectra are easier to analyze and
read at first glance, but NFS measurements have their particular merits for exam-
ple in the more precise determination of the so-called Lamb–Mössbauer factor,
which is necessary for accurate determination of the molar fractions of HS and LS
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molecules. Furthermore, NFS measurements can be combined with simultaneous
“nuclear inelastic scattering” (NIS) of synchrotron radiation, which bears valuable
information on the vibrational properties of the different spin states of a SC com-
pound [99] and thus complements conventional infrared and Raman spectroscopic
studies.

Detailed information on anisotropic properties and their temperature and pres-
sure dependent changes will be expected from studies with synchrotron radiation
in angular dependent measurements.

8.2.11 Magnetic Resonance Studies (NMR, EPR)

Proton NMR measurements have proven to be an elegant and easy method to fol-
low a temperature dependent ST phenomenon in solution (Evans method) [29b,
100, 101]. The thermally induced change of the paramagnetic peak relative to the
signal of a standard component, which in favorable cases can even be part of the SC
compound (e. g. the anion) [29b, 102], reflects the ST process. In solid state studies,
however, the NMR spectrum of SC compounds has been of little value in learning
much about this phenomenon, except to detect the transition itself from the line
width change. The numerous different protons in the ligands studied lead to broad
lines, which are difficult or impossible to analyze regarding details of the transition.
A way out of it would be choosing a simpler system with a small number of dis-
tinct protons in the ligand sphere [103]. More interesting and promising regarding
detailed information of the ST mechanism seem to be the results of T1 relaxation
time measurements. First attempts were reported by McGarvey et al. [103], who
observed for example that in iron(II) compounds T1 decreases with increasing dis-
tance of protons from the paramagnetic iron center. A comparative detailed proton
relaxation time study on [Fe(ptz)6](BF4)2 and its zinc analog was reported later by
Bokor et al. [104]. The authors plotted the measured T1 relaxation times as a function
of 1/T and found several minima, which they assigned to tunneling (at low temper-
atures) and classical group rotations (at higher temperatures). The corresponding
activation energies were derived from the temperature dependence of the NMR
spectrum. In a later similar NMR study the same research group measured the 19F
and 11B relaxation times T1 on the same ion and zinc compounds [105] and again
found characteristic minima in different temperature regions of the ln T1 versus 1/T
plot. They concluded that the SC takes place in a dynamic surrounding and not in
a static crystal lattice.

EPR spectroscopy has much more often been employed in SC research than the
NMR technique. The reason is that for all three classes of SC compounds of iron(III),
iron(II), and cobalt(II), which are the most actively studied ones, sufficiently well re-
solved characteristic spectra can be obtained in both HS and LS states. In the case of
iron(III) SC compounds there is no spin–orbit coupling in the HS (6S) state and thus
the relaxation times are long. EPR signals appear at characteristic g values yielding
characteristic ZFS parameters, D for axial and E for rhombic distortions. In the LS
state of iron(III) (2T2) spin–orbit coupling does occur, but due to the low tempera-
ture the vibrations are slowed down and electron–phonon coupling becomes weak
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and therefore relaxation times are long. The result is that the EPR spectrum of the
LS state of iron(III) exhibits a single line near to g ≈ 2 for a polycrystalline sample;
in a single-crystal study anisotropy effects can be observed via gx , gy , gz . Thus, it is
obvious that EPR spectroscopy is an extremely valuable tool to unravel structural
information of a SC system, which is otherwise not accessible. Many examples have
been reported, for instance, by Hendrickson et al. and Maeda et al.; their work and
other ST studies by EPR has recently been reviewed elsewhere [106]. Direct EPR
studies on neat SC compounds of cobalt(II) are also very informative as has been
demonstrated by Zarembowitch [26]. As spin–orbit coupling in the HS state (4T1)
shortens the spin–lattice relaxation times and makes signal recording difficult in
the room temperature region, good EPR spectra of cobalt(II) SC complexes in the
HS state are usually obtained at lowest possible temperatures, i. e. just above the
transition temperature. No problem arises in the recording of the LS spectrum,
even with an anisotropic g-pattern reflecting axial and rhombic distortion.

EPR spectroscopy of paramagnetic iron(II) is not possible at higher tempera-
tures. Spin–orbit coupling within the 5T2 state leads to so short a spin–lattice relax-
ation time that EPR spectra can only be observed at 20 K or lower. The FeII ion
is coupled to its environment more strongly than any other 3d ion. However, dop-
ing the FeII SC complex with suitable EPR probes like MnII or CuII, as was done
first by McGarvey et al. [107] with [Fe(phen)2(NCS)2] and [Fe(2-pic)3]Cl2 · EtOH
(2-pic = 2-picolylamine) doped with 1% MnII and later by Haasnoot et al. [108]
with [Fe(btr)2(NCS)2] · H2O doped with ca. 10% CuII, can improve the resolution
of the EPR signals considerably. If the dopant concentration, however, is too high
(as was the case in the work of Vreugdenhil et al. [108]), the EPR spectrum of
the paramagnetic HS phase becomes poorly resolved due to spin–spin interaction
and exchange broadening. McGarvey et al. have recorded EPR spectra of excel-
lent quality of single crystals of [Fe(ptz)6](BF4)2 doped with 1% MnII [109]. They
determined the D and E values in both spin states and confirmed the existence of
two structurally different LS phases which are formed by fast and slow cooling, re-
spectively. The above mentioned strategy of using CuII or MnII as local probe was
also recently applied to other compounds [110, 111].

It is worth mentioning that a small amount of FeIII ions, sometimes being present
as an impurity, can be used as an EPR probe to follow the ST in an FeII SC compound
[112].

8.3 Highlights of Past Research

8.3.1 Chemical Influence on Spin-crossover Behavior

Already in the early stage of SC research one has learned that various chemical al-
terations of the coordination compound such as ligand replacement or exchange of
substituents in certain ligand positions can influence the ligand field strength at the
metal center. Well known examples are the phenanthroline complexes of iron(II)
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[7]. [Fe(phen)3]X2 is a LS complex at all temperatures irrespective of the nature of
the anion X, but [Fe(phen)2(NCS)2] is a HS complex at room temperature which
converts to the LS state near 185 K due to the fact that two cis NCS groups coor-
dinated through N, replacing one bidentate phen, sufficiently weaken the average
field strength in order to compete with the spin pairing energy [2]. In the case of
the substituted [Fe(2-Y-phen)3]X2 complexes the ligand field strength is controlled
by the Y-substituent in 2 or 9 position of the phen ligand, whereby two factors are
operative simultaneously:

• an electronic push/pull effect influencing the basicity of the coordinating nitrogen
atom; and

• a steric hindrance effect caused by the rotating Y-substituent, which in turn
lengthens more or less the metal–ligand bond distance R and consequently
changes the cubic ligand field parameter through 10Dq ≈ 1/R5 [17].

This way one has explained qualitatively, and confirmed by CNDO/2-MO calcu-
lations [113], that the tendency to stabilize the HS state in [Fe(2-Y-phen)3]X2 at a
given temperature increases in the series Y = H < CH3O < CH3 < Cl [17], where
the H and the Cl substituents causes HS behavior at all temperatures, whereas the
CH3O and CH3 derivatives exhibit thermal spin transition. It is tempting to con-
clude that the ligand field strength may be “fine-tuned” via the electronic influence
and the steric hindrance effect and thereby shifting “at will” the ST up or down-
wards the temperature scale. This may indeed be the case in liquid solutions, where
no other perturbation except these two influences play a significant role. In the
solid state, however, cooperative interactions primarily due to the volume change
as a consequence of the ST, but also due to hydrogen bonding, π -stacking, crys-
tal packing effects, to name the most essential ones, come into play and can alter
the SC behavior. And yet, the ligand replacement effect mostly introducing the
NCS groups as the new ligand, and more importantly the exchange of specific sub-
stituents has always been a powerful strategy in order to influence the ST behavior
in a kind of controlled manner [7, 18, 22]. The most attractive goal is, in view of
eventual technical applications, in displays and switching devices, synthesizing SC
complexes exhibiting ST with hysteresis near to room temperature [114].

The most extensively studied SC systems, both from the chemical and physical
point of view, are the picolylamine complexes [Fe(2-pic)3]X2 · Sol, for which the oc-
currence of thermal ST was first reported by Renovitch and Baker [115]. This system
appeared to be very favorable in the sense that it could be chemically altered in
many ways and then examined by 57Fe Mössbauer spectroscopy, which deliver well
resolved signals unambiguously attributable to the two spin states (HS and LS) in-
volved [116, 117]. This way the effect of metal dilution on the SC behavior was stud-
ied for the first time in the mixed crystal series [Fex Zn1−x (2-pic)3]Cl2 · EtOH, with
x ranging from 1 down to 0.007 [116, 118]. As is seen from Fig. 5, the ST curve given
as the HS fraction as a function of temperature, γHS(T ), which is still rather steep in
the neat compound (x = 1.0), becomes more and more gradual and shifted to lower
temperatures, reflecting increasing stabilization of the HS state, upon lowering the
iron concentration. The shape of the γHS(T ) function approaches more and more
that of a Boltzmann distribution over all spin states, as is generally found for thermal
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Fig. 5. ST curves γHS(T ) of the mixed crystals [Fex Zn1−x (2-pic)3]Cl2 · EtOH for different
concentrations [116, 118].

ST in liquid solutions. The metal dilution effect in the solid state seen in Fig. 5 was
later on observed in other SC complexes of iron(II) [119–124]. It clearly reflects
the existence of cooperative elastic interactions between the spin state changing
metal centers. The nature of such cooperative interactions is purely mechanical. In
a crude description, if the spin state in a particular metal center changes say from
LS to HS, driven by the entropy gain of 40–80 J mol−1 K−1, the molecular volume
increases (by ∼3–5%) leading to an expansion of the lattice which causes a change
of the “chemical pressure” acting on all complex molecules in the crystal. This facili-
tates further spin state changes in other centers. With decreasing iron concentration
in a crystal diluted for instance with Zn complex molecules, however, the crystal
volume change per iron complex and thus the chemical pressure decrease. Finally,
in the highly diluted mixed crystal, with distances of >50 Å between the iron cen-
ters, cooperative interactions are practically vanishing and the γHS(T ) curve adopts
a Boltzmann like shape as in a liquid solution where cooperative interactions are
absent. A model has been developed, based on elasticity theory, which accounts
properly for the changes of chemical pressure as the origin of cooperative elastic
interactions in solid SC systems [117, 125]. This model, which will be described in
Section 8.3.4.8, was used to fit the experimental data in Fig. 5.

The nature of the non-coordinating anion has also shown to affect the ST behavior
in solid SC systems. Detailed examination by Mössbauer spectroscopy and magnetic
susceptibility measurements [117, 126] of the transition region near T1/2 in [Fe(2-
pic)3]X2 · EtOH (X = Cl, Br) have yielded most interesting features, which have
been observed for the first time in a SC complex (see Fig. 6). The chloride system
undergoes a stepwise ST with a plateau at γHS ≈ 0.5 extending over nearly 10 K
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Fig. 6. ST curves γHS(T ) of [Fe(2-pic)3]X2 ·
EtOH (X = Cl, Br) [117, 126].

around T1/2 [117]. As will be discussed in more detail in Section 8.3.4.8, the plateau in
this case arises from short-range interactions which are dominating in the transition
region and lead to domains of . . .HS–LS. . . next neighbor arrangements like in a
chess board.

Like the anions, the solvent molecules incorporated into the crystals of [Fe(2-
pic)3]X2 · Sol during the preparation are not coordinated to the iron(II) centers as
seen by X-ray diffraction studies of the different solvates with Sol = EtOH [127,
128], MeOH [129, 130], 2H2O [130, 131], but nevertheless their influence on the
ST behavior is quite enormous [132, 133]. The methanolate is more gradual than
the ethanolate, with higher T1/2 ≈ 150 K and no step, the monohydrate shows very
large hysteresis with T1/2 ↓≈ 200 K and T1/2 ↑≈ 290 K, and the dihydrate remains
in the LS state up to the highest temperature under study of ca. 300 K. The crystal
structures of these solvates are all different from one another [128, 129], but there
is no doubt that hydrogen bonding being also quite different in the four solvates,
influences the ST behavior. This was supported by examining the effect of isotopic
exchange (H/D and 14N/15N) in various positions of the picolylamine ligand and
the solvent molecules [42b, 133]. One observed drastic changes in the ST curves
only when the substitution took place in positions directly built in the hydrogen
bonding network interconnecting the iron(II) complex molecules. An example is
the picolylamine complex with C2H5OD/ND2 where the ST curve is shifted by ca.
15 K to higher temperatures and shows no longer a plateau as compared to the non-
deuterated system with C2H5OH/NH2. The deuterated hydrogen positions are in
this case constituents of the hydrogen bonding network. On the other hand, the ST
curve of the deuterated system with C2D5OH/NH2 is hardly changed, because in
this case the deuterated positions are located in the ethyl substituent, which is only
attached to the hydrogen bonding pathway. Hydrogen bonding has been found later
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Fig. 7. Optical detection of the spin state as a
function of temperature for [Fe(hyetrz)3](3-ni-
trophenylsulfonate)2 · xH2O [149].

in other SC complexes to be an important “communication link” between the spin
state changing centers [22, 134–138]. The presence of hydrogen bonding is not a
prerequisite for thermal ST to occur, but where it exists, it generally greatly assists
in the cooperative interactions.

The influence of crystal solvent molecules on the ST behavior was first stud-
ied by the Mainz group [132]. Numerous studies followed later [49, 139–151]. A
prominent example, which was recently reported in the literature, is [Fe(hyetrz)3](3-
nitrophenylsulfonate)2 · Sol (hyetrz = 4-2′-hydroxyethyl-1,2,4-triazole) [148]. This
compound contains three non-coordinated water molecules and exhibits LS behav-
ior up to ca. 370 K (Fig. 7). Heating the material above this temperature releases the
water molecules from the crystal lattice and the spin state jumps from LS (pink) to
HS (white). Upon cooling the water-free substance, the HS state is retained down to
ca. 100 K, where thermal SC occurs with hysteresis. The particularity of this material
is that the dehydration process is irreversible in a normal atmosphere and is accom-
panied by a color change. It has been suggested that this material is well suited for
applications such as single use displays or temperature threshold indicators [114c,
148, 149, 152].

8.3.2 Structural Insights

The crystal structure of [Fe(2-pic)3]Cl2 · EtOH was solved at two temperatures cor-
responding to the LS and HS states by Mikami and Konno [127] (Fig. 8). The Fe–N
distances were found to decrease by 10% on going from the HS to the LS state, a
result which can be extended to the majority of iron(II) SC compounds. No change
of space group was observed for [Fe(2-pic)3]Cl2 · EtOH, which is not surprising as
no hysteresis loop could be detected in the SC curve.

This is not the case for [Fe(ptz)6](BF4)2 which undergoes a ST with a thermal
hysteresis of about 7 K [54]. The ST is accompanied by a structural phase transition
from �R3 in the HS phase to �P1 in the LS phase as deduced from powder diffrac-
tion experiments [153]. If the compound is rapidly cooled, the formation of the �R3
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Fig. 8. Crystal structure of [Fe(2-pic)3]Cl2 · EtOH
at two temperatures [127].

Fig. 9. Temperature dependence of the
HS molar fraction of [Fe(ptz)6](BF4)2:
(•) in the supercooled R3 phase, (�, �)
accompanied by the structural phase
transition R3 ↔ P1 on slowly cooling
and warming [122].

phase is preserved, but a ST without hysteresis is still observed (see Fig. 9) [122].
This proves, at least in this case, that the occurrence of ST does not depend on the
occurrence of the crystal structure change. On the other hand, the crystal structure
change may very likely be induced by the spin transition.
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In 1986 it was first observed with [Fe(2-pic)3]Br2 · EtOH that a ST occurs with
hysteresis but without space group change [126]. Later on, the same behavior was
found for [Fe(phen)2(NCS)2]. This SC compound shows a small hysteresis [154],
but no space group change [155]. A more recent example with similar behavior
is [Fe(pmbia)2(NCS)2] with pmbia = N -(2-pyridylmethylene)aminobiphenyl [156].
Only in these cases, one can affirm that the observed hysteresis is only due to co-
operative effects as it is well known that a first order phase transition is gener-
ally accompanied by a hysteresis loop. Structural insights can also be gained un-
der perturbation conditions such as pressure and light as will be discussed in Sec-
tion 8.4.2.4.

8.3.3 Influence of Crystal Quality

Sample preparation through mechanical treatment or different synthetic procedures
have been shown to influence strongly the ST behavior of coordination compounds.
The very first observation of such effects was made by Hendrickson et al. on an
iron(III) SC complex [157]. Grinding the sample resulted in the flattening of the
ST curve with an increase of the residual HS fraction at low temperatures. The same
effect was later observed on the iron(II) complexes [FeL2(NCS)2] (L = phen, bpy)
[154] as well as for a cobalt(II) compound [158]. In the case of these ferrous com-
pounds, the very narrow hysteresis in addition becomes broader and gradual. The
SC characteristics may be also highly susceptible to the synthetic method. A typical
example is given by [Fe(phen)2(NCS)2], which can be prepared in two ways: by pre-
cipitation in MeOH or by extraction of a phen group from [Fe(phen)3](NCS)2 · H2O
using acetone [159]. Both compounds have the same chemical formula, but undergo
different SC behavior. The compound obtained by the first method shows a smooth
ST with a noticeable HS fraction at low temperature, whereas the second compound
undergoes a sharp and complete spin transition [154]. Similar effects were also found
later for the linear chain compound [Fe(Htrz)2trz](BF4) using different solvents in
the synthetic procedure [160]. In this case, the width of the hysteresis loop is greatly
altered on going from ≈ 40 K, for the compound prepared in an EtOH–H2O mix-
ture, to 20 K for the compound obtained in MeOH.

The origin of the effects mentioned above stems from crystal quality consid-
erations, in particular crystal defects introduced during sample preparation either
by milling (sheared deformations) or rapid precipitation, the size of the parti-
cles playing a minor role. In some cases, polymorphism can also be invoked to
account a difference in the observed magnetic properties. It was assumed to be
relevant for [FeL2(NCS)2] (L = phen, bpy) [161] and later clearly demonstrated
for [Fe(dppa)2(NCS)2] (dppa = (3-aminopropyl)bis(2-pyridylmethyl)amine) [162],
three polymorphic modifications being identified by X-ray analysis.

Thus, this section points out the extreme sensitivity of SC complexes to sample
preparation that is for the synthetic procedure or prior to physical measurements.
This aspect should not be neglected when considering a new SC problem.
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8.3.4 Theoretical Approaches to Spin Transition Phenomena

8.3.4.1 General Remarks

The experimentally determined ST curve γHS(T ), i. e. the fraction of HS molecules
as a function of temperature as the natural order parameter, may have different
shapes for spin transitions in solid state (Fig. 3), whereas in a liquid solution of a
SC complex the γHS(T ) curve always follows the gradual Boltzmann distribution
function. Thermal populations of all electronic levels of the HS and LS states are,
of course, also the decisive factor in solid state, but it is obvious that extra features
must be present which are responsible for the fact that the γHS(T ) curve in a solid
SC compound may be abrupt, or incomplete, or occur with hysteresis or with steps.
From the early stage of SC research, it has been one of the main concerns trying to
understand the nature of such extra features and to develop physically meaningful
theoretical descriptions incorporating these features.

Already Ewald et al. in their review article [163] pointed out that a difference
in the molecular frequencies of the HS and LS states, might be important for the
ST behavior. König et al. attempted to understand quantitatively the measured ST
curves of Schiff base complexes of iron(II) [53b, 164] by taking the vibrational part
of the partition function into account with different frequencies in the two spin states
and also paying attention to the fact that the 5T2 and 1A1 states differ in the ligand
field strength and consequently in the metal–ligand bond distances of ca. 0.2 Å.
And yet the agreement between the measured and calculated magnetic moments
as function of temperature was not satisfactory. But from the present point of view
it is fair to state that key features such as changes of the molecular dimension and
frequencies accompanying the ST had already been recognized as such even in their
“local picture” interpretation of ST, which in fact paid no attention to differences
between solid and liquid state spin transitions. The breakthrough, however, came
later when one recognized that SC molecules “communicate with other” during
ST in the crystalline state by virtue of the above mentioned changes of molecular
properties, thereby setting up cooperative interactions, which do not exist in liquid
state. It is by now commonly accepted among the researchers in the field that the
presence of short-range and long-range cooperative interactions are responsible for
any significant deviation from a Boltzmann like ST curve γHS(T ), irrespective of
the dimensionality (mononuclear, chains, layers, or 3D) of the lattice and special
bonding properties like hydrogen bonding and π–π stacking. Thus it is generally
agreed that any theory describing successfully ST phenomena in solid state must
take cooperativity into account.

In the following we shall review, in chronological order, the various efforts that
have been undertaken to describe theoretically ST phenomena.

8.3.4.2 The Chesnut Model

The earliest theoretical treatment was published by Chesnut [165] already in 1964
for a singlet–triplet system attempting to understand the magnetic excitations in
the linear chain compounds of tetracyanoquinodimethane–ion–radical salts. Ches-
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nut’s model considers N molecules, a fraction γHS is excited from a singlet ground
state to a g = 2S + 1-fold degenerate excited state separated by an energy �.
To account for cooperative effects, an energy term quadratic in γHS is added. The
shape of the free energy is now familiar (with the notation used up to now in SC
research):

F/N = γHS� − �γ 2
HS − T kB ln g − T σmix (6)

where σmix = −kB{γHS ln γHS + (1 − γHS) ln(1 − γHS), � denotes the interaction
between the excited state molecules, kB ln g is the entropy gain of an excitation, kB
is the Boltzmann constant, and σmix is the mixing entropy of a random distribution
of excited states. � is the elastic energy difference between excited state and ground
state. It depends on the size of the particle, which is considered different in the two
states. The merit of the paper by Chesnut is that it allowed a prediction of the sign
of the interaction constant � to be made considering the effect of lattice strain. It
took eight years that this paper was rediscovered for the iron(II) SC community
by Bari and Sivardière [166].

8.3.4.3 The Wajnflasz Model

The first theoretical paper, which refers to experimental facts from ST studies, was
that of Wajnflasz [167]. Wajnflasz introduced an interaction constant (he called
it J ) between the spin changing molecules and considered the ST as a cooper-
ative phenomenon. He used the picture of the molecule with a LS ground state
and a HS excited state which has a bond length rLS, and vice versa a HS ground
state and a LS excited state at bond length rHS with a temperature independent
energy separation �E = EHS(ground state) − ELS(ground state) > 0. The two
molecular states are mapped onto a two-valued fictitious spin σ = ±1 with +1
for the HS and −1 for the LS state. The Hamiltonian then adopts the shape of
an Ising Hamiltonian in an applied field. The interaction Hamiltonian between
site i and j is written as

∑
i Ji jσiσ j . This means that the interaction energy be-

tween two neighboring HS or LS molecules is +Ji j and between a HS and a LS
molecule −Ji j . The Hamiltonian of the interacting system of molecules is solved
by the molecular field approximation with only nearest neighbor interactions. The
different multiplicities of the spin levels was taken into account by a degener-
acy ratio gHS/gLS = 15. Wajnflasz pointed out that a negative value of the in-
teraction J , which increases the energy of the system by the number of HS–LS
pairs, qualitatively reproduces the steep transitions as in [Fe(phen)2(NCS)2]. The
unrealistic model Hamiltonian for the molecule with the extra excited states at
the same bond lengths may be the reason why the paper was not adequately
received. Nevertheless, this Hamiltonian yielded a formal solution for the devi-
ation from Boltzmann population and removed the unrealistic temperature de-
pendence of the energy separation between the spin states introduced by Jesson
et al. [168].
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8.3.4.4 The approach of Drickamer and Slichter

Slichter and Drickamer [169] introduced an interaction term and discussed in great
detail the consequences of the cooperativity for the spin transition behavior. They
followed the conjecture of König and Madeja [53b, 164] who proposed the possible
existence of cooperative phenomena and took, as the simplest form of the Gibbs
free energy, a linear interpolation with HS fraction γHS between the value GHS(T ) of
the unconverted material and the corresponding quantity GLS(T ) of the completely
converted material (we drop here a consideration of the pressure dependence). An
interaction is introduced by a term γHS(1−γHS) which they viewed as the next term
in a power series of expansion in the two variables γHS and (1 − γHS). This way
they obtained for the Gibbs free energy:

G/N0 = (1 − γHS)GLS(T ) + γHSGHS(T ) + �γHS(1 − γHS) − T σmix (7)

where N0 is the total number of molecules. This equation connects thermodynamic
quantities and avoids a detailed model for the isolated SC molecules. The non-
interacting molecules as for example in a low concentration liquid solution are de-
scribed by � = 0. For different values of � the so far known transition curves could
be reproduced, especially for � > 0 the observed steep transition. For sufficiently
large � > 0 values spin transitions with hysteresis are predicted.

The first comparison between theory and experiment was done by König and
Ritter on the SC compound [Fe(4,7-(CH3)2-phen)2(NCS)2] [170]. They found a
hysteresis width of 3.1 K with a transition temperature of 118.6 K for lowering of
temperature and could qualitatively reproduce the observed transition curve with
the theory of Slichter and Drickamer. The mean field interaction parameter was
determined to be � = 192 cm−1, the origin of which, however, was not discussed.

8.3.4.5 The Theory of Bari and Sivardière

Bari and Sivardière [166] published a pure theoretical contribution independent
of Slichter and Drickamer. They paid attention to the theoretical works of Ches-
nut [165] and Wajnflasz [167] and extended the theory of Chesnut by magnetic
exchange interactions and discussed also the possible existence of two-sublattice-
spin-structures. The theoretical results were not applied to any of the numerous
experimental results known at that time. The extension to long range magnetic ex-
change was mathematically appealing but was not applicable to the large molecular
crystals where magnetic ordering was never observed down to low temperatures.

8.3.4.6 The Model of Zimmermann and König

The first step towards better understanding the interaction constant in terms of the
properties of the SC compound was done by Zimmermann and König [171]. They
tried to explore the consequences of the decrease of the lattice vibrational frequen-
cies on going from the LS to the HS state. This decrease was carefully studied by
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the Mössbauer effect by Ritter and König [172]. The observed decrease of the De-
bye temperature θ leads to a higher density of states of lattice phonons in the HS
state. Employing the experimentally derived Debye temperatures θLS = 140 K and
θHS = 130 K, they calculated a contribution to the interaction constant � of only
40 cm−1. The actual interaction constant, however, which is needed to fit the ST
curves γHS(T ) of [Fe(4,7-(CH3)2-phen)2(NCS)2] is about five times larger. Also,
about one third of the total entropy change observed at the transition tempera-
ture was explained on this basis. This is particularly rewarding in view of the fact
that measurements of the specific heat have shown that the entropy change at the
transition temperature may be more than three times as large as would be ex-
pected from the electronic entropy difference between HS and LS states, which
is for iron(II) SC complexes with low local symmetry (orbital coupling quenched)
�Sel = R[ln(2S + 1)HS − ln(2S + 1)LS] ≈ 13 J mol K−1 [44]. The major part of the
entropy change is to be accounted for by contributions from lattice and molecular
vibrations.

8.3.4.7 The Cluster Model of Sorai and Seki

Sorai and Seki [44b] suggested a cluster model based on the Frenkel theory of het-
erophase fluctuations in a liquid. Clusters of n molecules assumed to be completely
in the LS or in the HS state are considered in thermal equilibrium without interac-
tions between the clusters. The cluster size n is treated as a measure for the steepness
of the ST curve γHS(T ): the larger n, the steeper the transition curves.

The model was applied to reproduce the ST functions of the zinc diluted mixed
crystal series of [Fex Zn1−x (2-pic)3]Cl2.EtOH where it was found by Mössbauer
spectroscopy that the γHS(T ) functions became increasingly gradual and shifted to
lower temperatures with decreasing iron concentration (see Fig. 5) [116, 117]. The
data were parameterized by a modification of the cluster model of Sorai and Seki
and it was found that the cluster size n decreased with decreasing iron concentration
and the concomitant decrease of the steepness of γHS(T ).

The drawback of the cluster model of Sorai and Seki, however, was readily appar-
ent in view of these results of metal dilution studies: there is no physical background
built in the model which could explain the effect of metal dilution on the ST curves,
that is the fact that, with decreasing iron concentration, and thereby increasing dis-
tances between the spin state changing centers, the apparent cooperative interac-
tions are gradually weakened, which more and more stabilizes the entropy-favored
HS state. The wealth of such metal dilution studies first carried out in a systematic
manner by the Mainz group [116, 117] was evident: it is the best choice to prove
the existence of cooperative interactions in solid SC complexes. But a new theory
was badly needed to incorporate specifically the role of cooperative interactions.
Such a theory was later developed by H. Spiering of the Mainz group [117, 125].
Their model is based on changes of volume, shape, and elasticity of the lattice as
the main factors influencing the cooperative interactions. The essential features of
this “model of lattice expansion and elastic interactions” are outlined in the next
section.
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8.3.4.8 The Mainz Model of Lattice Expansion and Elastic Interactions

Knowing about the experimental facts from (i) metal dilution studies [116, 117]
and (ii) the volume change upon ST from temperature dependent crystal structure
determination on the [Fe(2-pic)3]Cl2 · EtOH [126, 127], Spiering et al. [117, 125]
attempted to interpret quantitatively all parameters with a new model featured by
lattice expansion and elastic interactions upon spin transition. The authors divided
the task into two parts:

• high dilution with practically no interactions, and
• highly concentrated mixed crystals with cooperative interactions.

As any interaction is assumed to be zero in the first case, the fraction of molecules
in the HS state is solely determined by the Boltzmann population according to the
free energy difference � fHL(T ) between HS and LS states. The resulting molar
fraction of HS molecules as function of temperature is:

γHS(T ) = exp(−� fHL(T )/kBT )

1 + exp(−� fHL(T )/kBT )
(8)

Knowing γHS(T ) means that � fHL(T ) is also known. The free energy difference
has been parameterized by an electronic part taking the ligand field parameters from
a fit of the temperature dependence of the quadrupole splitting of the Mössbauer
doublet, by a vibrational part with two frequencies of degeneracy 6 and 9 being
different in the HS and LS states following Ewald et al. [163], and a small tem-
perature dependence of the energy difference between the lowest vibrational HS
and LS states due to the thermal lattice expansion. This way the experimental data
of the highly diluted compound [Fex Zn1−x (2-pic)3]Cl2 · EtOH (x = 0.0009) with
practically isolated [Fe(2-pic)3]2+ SC centers in the corresponding Zn matrix could
be well reproduced [116, 118].

For the case of highly concentrated mixed crystal systems cooperative interac-
tions come into play, for which an extra term w(γHS, x, T ) has to be included in the
expression for the free energy per complex molecule:

fx = x[γHS fHS + (1 − γHS) fLS − T Smix(γHS)]

+(1 − x) fZn + x · w(γHS, x, T ) + fG (9)

where fG is the free energy per complex molecule of the residual lattice, taken
independent of the HS fraction γHS;

Smix = −kB[γHS ln γHS + (1 − γHS) ln(1 − γHS)] (10)

is the mixing entropy between HS and LS molecules. As the interaction energy
per complex molecule vanishes at infinite dilution, w(γHS, x → 0, T ) → 0, the
equilibrium condition ∂ fx/∂γHS = 0 yields the Boltzmann type population as given
in Eq. (8) for “isolated” non-interacting complex molecules:

γHS(T ) = ZHS(T )

ZHS(T ) + ZLS(T )
= exp(−� fHL(T )/kBT )

1 + exp(−� fHL(T )/kBT )
(11)
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ZHS(T ) and ZLS(T ) are the partition functions of the molecules in the HS and
LS states. For concentrated systems with non-vanishing interactions the equilibrium
condition (∂ fx/∂γHS = 0) yields:

(
∂w

∂γHS

)
T

= −kBT ln [γHS(T )/(1 − γHS(T ))] − � fHL (12)

which can be calculated as function of T and x using experimental data of � fHL of
highly diluted systems and the measured γHS(T ) curves at different concentrations
x . Plotting (∂ fx/∂γHS) as function of γHS for different x yields, as a good approxi-
mation, linear functions which may be expressed as:

(
∂w

∂γHS

)
x

= � − 2�γHS (13)

where �(x) and �(x) also turn out to be linear functions of x . Integration of Eq. (13)
gives the following expression for the interaction energy:

w(γHS, x) = �(x)γHS − �(x)γ 2
HS (14)

where the formal integration constant is included in the lattice contribution
fG(x, T ). The linear dependence of ∂w/∂γHS on x as well as on γHS was verified
in several mixed crystal series [125a, 125b, 173, 174].

The interaction term w(γHS, x, T ) is interpreted as has been described in review
articles of Gütlich et al. [17, 18b, 21]. Following Eshelby [175] the HS, LS, and other
metal M complex molecules are defects in their own crystal which is approximated
by a homogeneous, isotropic elastic medium characterized by a bulk modulus, K and
a Poisson ratio, σ . The matrix provides a stress-free volume υ0 for a molecule that
may be occupied by volumes υHS, υLS and υM in case of HS, LS, and metal complex
molecules, respectively. These volumes can be larger or smaller than υ0 and for
simplicity are considered to be incompressible. The incompressibility is justified in
the case of a soft matrix (small bulk modulus, K ) as compared to large intramolecular
force constants (frequencies) of the oscillator potentials especially the A1 breathing
mode frequency. The misfit of the volume υ (υ = υHS, υLS, υM) builds up a strain
field, which has an elastic energy [175]:

Eel = 1/2K (γ0 − 1)(υ − υ0)
2/υ0 − 1/2Kγ0(γ0 − 1)(υ − υ0)

2/V (15)

V is the volume of the crystal and the Eshelby constant γ0 is related to the Poisson
ratio σ by 0 ≤ γ0 = 3(1−σ)/(1+σ) ≤ 3. The second term in Eq. (15) which is very
small for an isolated defect, since V/υ0 is of the order of Avogadro’s number, refers
to an interaction between the defects. This term attains a finite value if the number
of defects N is of the same order, this means each lattice site acts as a defect due
to its misfit to υ0. The negative second term is understood by the image pressure
on the free surface, which builds up by adjusting the volume υ0 to the size of υ.
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Eshelby has shown that the crystal volume V changes by more than just υ − υ0,
namely by δυ

δυ = γ0(υ − υ0) (16)

This additional crystal volume change δυ −(υ −υ0) = (γ0 −1)(υ −υ0) is formally
attributed to a pressure pI = −K (γ0 − 1)(υ − υ0)/V , such that the second term in
Eq. (15) being equal to 1/2pIδυ is interpreted as volume work against this pres-
sure, which is called image pressure. Although a homogeneous stress field (due to
pressure) only applies for one defect if centered in a matrix of spherical shape, this
solution can be generalized by two facts. First, Eshelby has shown that the volume
excess remains valid irrespective of the shape of V and the location of the defect.
Second, the distribution of defects is assumed to be homogeneous which results
again in a homogeneous stress field. For N defects with volume υi the volume ex-
cess is δV = (γ0 − 1)�i (υi − υ0) and the image pressure pI = −KV /V so that the
total elastic energy is given by:

Etotal = 1
2

K (γ0 − 1)

N∑
i=1

(υi − υ0)
2/υ0 − 1

2
Kγ0(δV )2/V (17)

The volume excess per defect δV/N is expressed by the fraction of x of SC
molecules in a mixed crystal and γHS of HS molecules:

δV/N = x[γHS(υHS − υ0) + (1 − γHS)(υLS − υ0)] + (1 − x)(υM − υ0) (18)

Inserting δV into Eq. (17) an interpretation of �(x) and �(x) is obtained. Etotal has
to be divided by x N to get the energy per iron ion:

�(x) = x1/2Kγ0(γ0 − 1)(υHS − υLS)2/υc (19)

�(x) = 2�(x)
υM − υLS

υHS − υLS
(20)

The volume υc = V/N is the volume per complex molecule. Note that υ0 does not
enter these formula, so that all quantities are experimentally accessible. The volume
changes per molecule γ0(υHS − υLS) and γ0(υM − υLS) are obtained by comparing
the unit cell volumes υc,HS, υc,LS, and υc,M of the crystal in the HS and LS states
and the isomorphous metal compound, respectively, measured by X-ray diffraction.
Because of the temperature dependence of the unit cell volume, which takes place
without ST, the volumes have to be taken at the same temperature by extrapolation.
The elastic constants K and γ0 can be measured for example by Brillouin scattering.

This model so far described for spherical defects was later on extended for
anisotropic defects [125b, 125c].
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8.3.5 Influence of a Magnetic Field

Knowing the free energy of the system, thermodynamics predicts the transition
behavior in an applied magnetic field if the magnetic response of the molecules is
known, which is the susceptibility of the two spin states. A decrease of the transition
temperature in an applied magnetic field B is expected because of the decrease in
energy of the molecules in the HS state by its magnetic moment µHS = χ B. Adding
the energy shift −1/2χ B2 to the free energy, the shift of the transition temperature
�T1/2 can be calculated:

�T1/2 = −χ B2/2�SHL(T1/2) (21)

where �SHL(T1/2) is the entropy difference between HS and LS states at the tran-
sition temperature.

Qi et al. [176] were the first to measure the shift of the transition curve of the
compound [Fe(phen)2(NCS)2] in an applied magnetic field of 5.5 T. The compound
is well suited for measuring small shifts as the transition at T1/2 = 178 K with a hys-
teresis widths of <0.5 K is very steep. The transition shifts by −0.10(4) K compared
with the calculated value of −0.06 K (which is half of the value given by Qi et al.
because the integration factor 1/2 is missing in their article).

Later Bousseksou et al. [177] repeated the measurement in a large pulsed mag-
netic field of 32 T, which corresponds to an expected temperature shift at T1/2 of
2.0 K. The HS fraction was determined by optical reflectivity. The pulsed field has a
rise time of 75 ms and a decay time of about 0.5 s. The hysteresis leads to a complex
response of the HS fraction versus time. An increase of the HS fraction is obtained
with an irreversible (reversible) character in the ascending (descending) branch of
the hysteresis loop. The time dependence of the HS fraction provides information
on the kinetics of the SC process, which has been qualitatively discussed. Indepen-
dently, magnetic field experiments were also performed on a CoIII complex [178]
and a MnIII SC complex [35b].

8.3.6 Two-step Spin Transition

8.3.6.1 First Observations in Mononuclear Complexes

The first observation of an anomaly of the ST behavior of a step near T1/2 in the
compound [Fe(2-pic)3]Cl2 · EtOH in 1982 by Köppen et al. [117] has led to many
speculations about the origin of the so-called “two step spin transition”. The struc-
ture of this compound remains the same during the ST and shows no peculiarities
[126]. Based on the ideas of the lattice expansion model an anomalous behavior of
the elastic properties was first discussed. It turned out that a few percent variation
of the bulk modulus easily leads to deviations from the “normal” transition curves.
This procedure, which tended to trace back the anomaly of the transition curve to
an anomaly of the bulk modulus, was unsatisfactory and was not followed further.
Later it was found that the step in [Fe(2-pic)3]Cl2 · EtOH most likely arises from
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short range interactions, whereby . . .–HS–LS–HS–LS–. . . formation appears to be
energetically favored (see below).

The second anomalous transition with a pronounced step, a plateau of ca.
40 K, was observed by Petrouleas and Tuchagues in 1987 by Mössbauer spec-
troscopy and magnetic susceptibility measurements on the compound Fe[(5NO2-
sal-N(1,4,7,10))] (5-NO2-sal-N(1,4,7,10) = 2,2′-(2,5,8,11-tetraazadodeca-1,11-diene-
1,12-diyl)4-nitrophenolato [179]. In 1989, Sasaki and Kambara proposed a two-
sublattice-model with a “ferromagnetic” type of interaction inside a sublattice and
an “antiferromagnetic” type of interaction between the sublattices [180] and could
show, that such an interaction scheme produces steps without special assumption
concerning elastic properties. The fact that Kambara considered a Jahn–Teller in-
teraction to be responsible for the cooperativity is not important in this context.
The consequences of sublattice structure formation were explored in the theory of
magnetism. By mapping the ST energy expressions to an Ising Hamiltonian as was
done by Wajnflasz [167] the solutions obtained in magnetism could be reinterpreted
in the context of spin crossover. This way complete phase diagrams were worked
out for two-sublattice-models and the region of existence of two-step-transitions
was given [181, 182]. The sublattice picture seemed to be supported by an X-ray
diffraction study of [Fe(5NO2-sal-N(1,4,7,10))] showing different lattice sites for
HS and LS complexes inside the step region [183]. It was proved later with a new
crystallographic data set that all sites are equivalent [184].

8.3.6.2 Specific Heat Measurement on a Two-step Spin Transition

The free energy, which was successfully used to describe gradual spin transitions,
predicts the specific heat associated with the ST of the compound. A test of the gen-
eralized free energy equation of Slichter and Drickamer [169] was first undertaken
on the gradual ST of the deuterated compound [Fex Zn1−x (2-pic-ND2)3]Cl2 · EtOD
for a series of concentrations x [184]. It was shown that the specific heat is adequately
described by a sum of the specific heat of the lattice and the contribution from the
inner degrees of freedom of the SC molecules. Differentiating the Gibbs free energy
(Cp(T ) = −T ∂2G/∂T 2)

G(x, γHS, T ) = x(γHS�GHL(T ) − T Smix + GI(x, γHS))

+ xGLS(T ) + (1 − x)GZn(T ) (22)

GI(x, γHS) = x�γHS − x�γ 2
HS

where the interaction term GI is assumed to be independent of temperature, one
obtains:

Cp(x, γHS, T ) = xCHL
p (γHS, T ) + xCLS

p (T ) + (1 − x)CZn
p (T ) (23)

CHL
P (γHS, T ) = −T

[
γHS

∂2�GHL

∂T 2 + ∂γHS

∂T

(
∂�GHL

∂T
− ∂Smix

∂γHS

)]
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The shape of the formula of the specific heat CHL
p (γHS, T ) of an ensemble of SC

molecules is derived by use of the equilibrium condition (∂G/∂γHS) = 0. CHL
p leads

to a pronounced peak in the transition region mainly determined by the derivative
of the HS fraction ∂γHS/∂T . This peak, the area of which is proportional to the
concentration x of iron molecules, superimposes the monotonically increasing heat
capacity xCLS

p (T ) + (1 − x)CZn
p (T ) of the lattice. The shape of the peak was well

reproduced and the quantitative analysis fits 95% of the area for all concentrations
x [185].

The heat capacity of the two-step ST [Fe(2-pic)3]Cl2 · EtOH was already mea-
sured by Kaji and Sorai [62] in 1985. The specific heat curve has two narrow peaks
at both sides of the step as is expected from the term proportional to ∂γHS/∂T in
CHL

p . Jakobi et al. re-measured this curve together with the pure zinc compound and
zinc diluted mixed crystal [Fe0.73Zn0.27(2-pic)3] Cl2.EtOH in order to get access to
all three terms of C p(T ). While the gradual transition of the Fe0.73Zn0.27 compound
was perfectly fitted, the two-step-transition at x = 1 showed significant deviations
of the measured entropy of the ensemble of SC molecules:

S(T ) − SLS(T ) =
∫ T

0

C p(T ) − CLS
p (T )

T
dT (24)

from the calculated entropy (S = −∂G/∂T ):

S(T ) − SLS(T ) = γHS�SHS(T ) + Smix(γHS) (25)

in the temperature region of the step. In Fig. 10 the difference S(T ) − SLS(T ) −
γHS�SHL(T ) is plotted against the HS fraction γHS [186] (smooth curve), such that
the Smix is the theoretical value of the mean field theory according to Eq. (24). Taking
the experimental values S(T ) − SLS(T ) from the integration of the specific heat
data (Eq. 24) and subtracting the entropy contribution of non interacting molecules
γHS�SHL(T ) an experimental mixing entropy is obtained which in the step region
is much less than the theoretical one (Fig. 10).
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Fig. 10. The entropy difference S−SLS−
γHS�SHL as function of the HS frac-
tion γHS obtained by Eqs. (24) and (25)
from the experimental data C p(T ) and
γHS(T ) (experimental points connected
by a solid line). In mean field theory the
entropy difference is equal to the mix-
ing entropy Smix (solid line) [186].
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The deviation from a random mixture of molecules in HS and LS state causes the
decrease in entropy in the step region. The reason for such a deviation is, of course,
the cooperative interaction, which deviates from the mean field interaction term GI
in Eq. (22). Thermodynamically a “loss” of entropy leads to a destabilization, which
must be compensated by a decrease in enthalpy as a result of the interaction between
the spin changing molecules. As done for the entropy the difference of enthalpies
H(T ) − HLS(T ) can be obtained by integration of the specific heat curves:

H(T ) − HLS(T ) =
∫ T

0
(C p(T ) − CLS

p )dT (26)

The interaction term is obtained from the Gibbs free energy of Eq. (22) calcu-
lating H = G + T S which leads to:

GI = H(T ) − HLS(T ) − γHS�HHL (27)

In Fig. 11, the interaction GI is plotted versus the HS fraction γHS. The GI values
obtained by integration of

∫ T
0 (C p(T ) − CLS

p ) minus γHS(T )�HHL are the experi-
mental points (+), which are significantly lower around γHS = 0.5 in the step region
from the mean field interaction term GI = �γHS −�γ 2

HS (solid line). Obviously, the
decrease in entropy reflects a partial arrangement of HS and LS molecules being
not at random but showing some ordering which is stabilized by a further decrease
of the energy as compared to the mean field energy which favors a random distri-
bution.

Fig. 11. The interaction Gibbs
free energy GI as function of the
HS fraction γHS(+) obtained by
use of Eqs. (26) and (27) from
the experimental data C p(T ) and
γHS(T ). The solid line is the cal-
culated mean field contribution
GI = �γHS − �γ 2

HS to the inter-
action term [174].

8.3.6.3 Two-step Transition of a Dinuclear Complex

The two-step transition curve of a dinuclear iron(II) complex [Fe(bt)(NCS)2]2bpym,
where bt denotes 2,2′-bi-2-thiazoline and bpym for 2,2′-bipyrimidine, observed by
Real et al. [187] was simulated in quite a different way. The simple assumptions
of an asymmetric energy level scheme of the dinuclear molecule and an attractive
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interaction between molecules with one iron in the HS and the other in the LS state,
(HS,LS) and (LS,HS) molecules, were successful. The excitation enthalpy of the LS
molecule (LS,LS) with both sites in the LS state to a (LS,HS) or (HS,LS) molecule
was assumed to be different by a value W from half the enthalpy �H needed for the
conversion of both LS states to the HS molecule (HS,HS). For negative values of W
a number of N (HS,LS) and (LS,HS) molecules are lower in energy by NW than N
(LS,LS) and (HS,HS) molecules, so that HS,LS pairs are favored in thermodynamic
equilibrium. With the fractions x, y, z (x + y + z = 1) for (LS,LS), (HS,LS) or
(LS,HS), and (HS,HS) molecules, respectively, and the entropy difference �S/2
between the HS and LS state of one site, and taking into account only mean field
interaction between sites in LS and HS states of iron(II) in different dimers the
authors obtained the following free energy [187]:

F = y(�H/2+ W )+ z�H +�(xy + yz +2xz)− (y/2+ z)T �S − T Smix (28)

where Smix = −R(x ln x + y ln y + z ln z) is the mixing entropy of the three species.
Rewriting Eq. (28) using the HS fraction γHS = y/2 + z and dropping constant
energies the equation obtains a shape similar to the mean field free energy equation
of Slichter and Drickamer [169] for the first two terms, an attractive interaction
between y molecules and the energy shift W concerning these molecules:

F = (�H − T �S)γHS − �γ 2
HS − 1/2�y2 + W y − T Smix (29)

The interaction scheme implicitly favors y-type dinuclear molecules by the inter-
action term −�/2y2 even if the energy levels are equidistant (W = 0) and this way
causes already a small step in the transition curve. Such a term cannot be justified
by molecular properties and represents an undesirable term inherently introduced
by the Ansatz of Eq. (28). A positive energy W decreases this step and, more impor-
tantly, by a negative W pronounced steps can be simulated. This work has shown
that short range correlation (preference of (HS, LS) pairs) of the distribution of
the spin states gives rise to step transitions so that HS and LS sublattices are not
necessarily a prerequisite for stepwise spin transition.

8.3.6.4 Monte Carlo Simulation of Two-step Transitions

A great success was the simulation of the two step transition in [Fe(2-
pic)3]Cl2 · EtOH, the transition curves of the (Fex Zn1−x ) dilution series and the
anomalous relaxation curves of the LIESST state (Section 8.3.7). The insight gained
by the simulation results of the dinuclear compound encouraged to start Monte
Carlo simulations based on a very simple picture, which does not start out from
any correlations from the beginning, like the presence of sublattices or dimers. The
interaction scheme is given as simple as possible with a minimum of parameters
and entirely equivalent lattice sites. Kohlhaas et al. [188] have treated successfully
the thermal ST in the system [Fex Zn1−x (2-pic)3]Cl2 · EtOH, and Romstedt et al.
[189] have also reproduced successfully the anomalous relaxation curves recorded
after LIESST. At that time the behavior of the step in a metal dilution series and
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under small pressure (∼1 kbar) was already known from experiment [190]. The step
was found to vanish already for small Zn concentrations (x ≈ 0.9) such that the
transitions in mixed crystals with x < 0.9 can be described as gradual ones. The
mean field interaction energy of the crystal of N sites with x N SC molecules, is the
starting point (Eq. 14),

EI = x2 N�γHS − x2 N�γ 2
HS (30)

with well defined values for � and �. Note that � and � are defined such that �(x)

now equals x� and �(X) equals x�. The short-range interaction is introduced by
only one parameter for nearest and next nearest neighbor interactions, such that
their mean field sum vanishes at every site. Such a minimal extension of the theory
preserves the mean field interaction constant. The interaction energy of Eq. (30) is
extended by a sum over all lattice sites in the HS state. Interaction constants between
only one type of spin states and other metal centers are sufficient to describe the
mutual interaction between all types of sites [184]. If the two center interaction can
be expressed by the properties �P (i. e. �P stands for an elastic dipole tensor) of the
centers, the total sum of interaction energies was rearranged in such a way that
not the property (PHS, PLS and PM) of the sites but the differences PHS − PLS and
PM −PLS are attributed to the HS and M sites, respectively. The sum collecting the
contributions of short range interactions:

�EI = −
∑

ri =n,nn,

i=iH

�J ri
HHν

ri
H + �J ri

HMν
ri
M (31)

runs over all sites i = iHS in the HS state. ν
ri
H and ν

ri
M are the numbers of next

(ri = n) and next nearest (ri = nn) molecules in the HS state and metal sites M,
respectively. The four interaction constants �Jri

SS(SS = HH, HM) are reduced to two
constants by the requirement that �EI vanishes. If νn and νnn are the number of
next and next nearest neighbors, respectively, then there are νnγHS and νnnγHS sites
in the HS state. The mean field interaction energy �Em with the central HS site:

�em = −
(

�J n
HHνn + �J nn

HHνnn
)

γHS (32)

vanishes for �J nn
HH = �J n

HHνn/νnn . The molecules with metal centers M = Zn are very
similar to the molecules in the HS state, so that the same ratio between the two
neighboring shells are imposed. The ratio of the HM and HH interaction constants
�Jr
HM

�Jr
HH = 0.8 (r = n, nn) is also taken from the mean field evaluation [125c], so

that only one fit parameter is left.
For the Monte Carlo simulations the free energy difference � fHL(T ) and the

values � = 275 cm−1 and � = 175 cm−1 from the calculation of the transition
curves of the diluted series (x ≤ 8) [188] were used.

In Fig. 12, the experimental and the simulated data of the metal (M = Zn) dilution
series are plotted. The step of the transition curve is very sensitive to the concen-
tration of Zn and vanishes already at x = 0.9. The simulated curves in Fig. 12 were
calculated with the parameter J n = −17.4 cm−1 fitted to the x = 1 transition curve.
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Fig. 12. The effect of metal dilution on the ST curve of [Fex Zn1−x (2-pic)3]Cl2 · EtOH (x = 1;
0.98; 0.94; 0.89; 0.86; 0.70; 0.60; 0.50, from right to left). The transition temperatures increase
with increasing iron concentrations x . The Monte Carlo simulations on the right side fit with
the experimental data [190] on the left side.

S S

Fig. 13. The effect of pressure on the ST curve of [Fe(2-pic)3]Cl2 · EtOH (p = 1, 600,
1350 bar, from left to right). The transition temperatures increase with increasing pressure.
The Monte Carlo simulation on the right side fit with the experimental data [190] on the
left side.

J n , the sign of which is opposite to the long-range interactions and J nn , refers to
an antiferromagnetic type of interaction in accordance to a preferred . . .–HS–LS–
HS–LS–. . . formation.

The absolute value of the interactions with the nearest neighbor molecules is
of comparable size with that of the long range interactions. For νn = 6 neighbors
the interaction energy is approximately −105 cm−1. Nevertheless, the appearance
of a step in the transition curve sensitively depends on other parameters involved.
Small applied pressures on the order of p = 1 kbar already suppresses the step in
the transition curve as shown in Fig. 13.
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The energy shift of the HS state is equal to pδυHL, where δυHL = 14 Å3 is the
volume increase of the unit cell for each molecule changing spin from LS to HS
[191]. These shifts of pδυHL = 42 cm−1 and 95 cm−1 for p = 600 bar and 1350 bar,
respectively, are small energies as compared to the range of energy separations in SC
molecules. The simulated transition curves in Fig. 13 again reproduce the observed
behavior of the transition curves.

Correlations between spin states can be analyzed from the Monte Carlo samples
in thermal equilibrium. The correlation length of an antiferromagnetic order has
been estimated to be very short (for details see [192]), not larger than the next
nearest neighbor distance and is therefore not observable by X-ray diffraction.

8.3.7 LIESST Experiments

The most striking result of the last twenty years of SC research is certainly the dis-
covery of the photo-switching of spin states in FeII coordination compounds in 1984
[193, 194]. This effect was actually accidentally first observed on a single crystal of
the SC complex [Fe(ptz)6](BF4)2. Irradiating the compound with green light into
the 1A1 → 1T1,2 absorption bands at 20 K, that is in the LS region, resulted in the
population of a metastable HS state with a virtually infinite lifetime at this tempera-
ture. This phenomenon became known as the LIESST effect (light-induced excited
spin state trapping). Thermal relaxation to the thermodynamically stable LS state
was observed by warming the compound up to ∼50 K. This relaxation occurs by non
adiabatic tunneling through the energy barrier between the potential wells of the
two states, whereby the observed temperature dependence of the relaxation rate is
due to thermal population of the vibronic levels of the 5T2 manifold [195]. It was
also possible to directly come back to the LS state by irradiating into the 5T2 →
5E absorption band with red light for the initial excitation followed by two inter-
system crossing (ISC) processes 5T2 → 3T1,2 → 1A1. This back switching has been
termed “reverse-LIESST” [196]. The mechanism of these photo-switching processes
is depicted in Fig. 14.

Excitation with green light at low temperature affords the 1A1 → 1T1,2 transitions
which is followed by a fast relaxation cascading over two successive ISC steps, 1T1,2
→ 3T1,2 → 5T2 populating thereby the metastable 5T2 state. As radiative relaxation
5T2 → 1A1 is spin and parity forbidden and decay by thermal tunneling to the ground
state 1A1 very slow, the lifetime of the 5T2 state is found to be practically infinite at
sufficiently low temperature, for example weeks at 20 K in case of [Fe(ptz)6](BF4)2.
Fig. 14 also shows that red light irradiation into the spin and parity forbidden 1A1 →
3T1 band should also lead to a population of the metastable 5T2 state, provided the
excitation wavelength is sufficiently separated from that affording the back switching
of the LIESST state [196].

Fig. 15 shows the single-crystal absorption spectra of [Fe(ptz)6](BF4)2 recorded
at 20 K after irradiation at 514 nm affording the double ISC process 1A1 → 1T1,2
→ 3T1,2 → 5T2 (Fig. 15b), and at 980 nm affording the single ISC process 1A1 →
3T1,2 → 5T2 (Fig. 15d), both populating the long-lived metastable LIESST state
and the reverse-LIESST effect by irradiation at 820 nm (Fig. 15c) [21].
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Fig. 14. Schematic illustration of LIESST and re-
verse LIESST of a d6 complex in the SC range.
Spin allowed d–d transitions are denoted by ar-
rows and the radiationless relaxation processes by
wavy lines [17].

The LIESST effect was also observed on other compounds [17, 18, 20] and ap-
peared actually to be a common phenomenon for Fe(II) complexes exhibiting ther-
mal SC [197]. A major difference, however, is the lifetime of the LIESST state at
a given temperature, which depends strongly on the ligand field strength, viz. the
weaker the ligand field strength, the smaller the difference �E0

HL between the low-
est vibronic levels of the HS and LS states, the longer the lifetime of the LIESST
state. The difference �rHL in the metal–ligand bond distance between HS and LS
state (Fig. 2) is also to be considered: the larger this quantity, the longer the lifetime
of the LIESST state.

Although LIESST was first discovered on a single crystal, it can also occur for
SC molecules embedded in polymer films, Langmuir Blodgett films or in KBr pel-
lets [198–201]. LIESST is not restricted to compounds with FeN6 cores as the phe-
nomenon was also observed for compounds of the FeP4Cl2 type with phosphorus
coordinating ligands [202]. Recently the effect was even reported for an FeIII com-
plex [203] contrary to the previous expectations [17]. In this case the trapping of
the metastable state might be assisted by a photo-induced crystallographic phase
transition.

Another appealing aspect of the LIESST effect concerns the possibility of prob-
ing cooperative effects of the spin transition by analyzing the shape of the HS →
LS relaxation curves. For non cooperative compounds such as for instance diluted
systems, single exponential relaxation curves are always observed. Cooperative ef-
fects, however, give rise to strong deviations from first-order kinetics [195, 204] with
sigmoidal curves. This shape must be interpreted as a self-acceleration of the HS
→ LS relaxation with increasing proportions of LS fraction. The acceleration stems
from the build-up of an internal pressure (image pressure) with increasing LS pro-
portions, which in turn is caused by the volume change of the complexes associated
with the spin transition.
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Fig. 15. Single-crystal absorption spectra of [Fe(ptz)6](BF4)2 at 20 K: a) normal spectrum
before irradiation, b) after irradiation into the spin-allowed transition of the LS state, 1A1
→ 1T1, at 514.5 nm, c) after subsequent irradiation into the maximum of the spin-allowed
transition of the HS species, 5T2 → 5E, at 820 nm, and d) after irradiation into the spin-
forbidden transition, 1A1 → 3T1, at 980 nm [17, 21, 216].
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Fig. 16. Spin transition in [Fe(etz)6](BF4)2: (◦) normal cooling mode; (×) heating mode
after irradiation at 820 nm. The arrows indicate relaxation processes which are possible
inside the hysteresis subsequent to irradiation. The relaxation direction inside the hysteresis
is determined by the existence of a critical LS concentration at a given temperature, as
visualized by the sigmoidal curve inside the loop [205b].

Light-induced bistability was observed for the first time for [Fe(etz)6](BF4)2 with
etz = 1-ethyltetrazole [205] opening a new area of photo-magnetic investigations
(Section 8.4.2.3). In this system, two inequivalent lattice sites in a ratio of 2:1 were
detected by X-ray analysis. Site A reveals a thermal HS → LS transition around
105 K whereas site B remains in the HS state down to liquid helium temperatures
as we can see in Fig. 16. Irradiation with red light affords first the population of
the metastable LS state, which becomes after reaching some critical LS fraction the
ground state of the system. As the temperature is raised to above 80 K, site B goes
back to the HS state (Fig. 16). This can be regarded as a thermal ST in the heating
mode with a very large hysteresis. The corresponding branch in the cooling mode
is not accessible in a simple temperature cycle, because of the macroscopic nature
of the energy barrier between the HS and LS state of the whole crystal.

8.3.8 Formation of Correlations During HS → LS relaxation

Relaxation measurements following laser excitation of the metastable HS state
(LIESST) under different irradiation conditions provided a direct proof of the for-
mation of correlations in the SC compound [Fe(2-pic)3]Cl2.EtOH. For infinite (long)
range interactions, the decay rate depends only on the fraction of molecules in the
HS state:

dγHS

dt
= −kHL(γHS)γHS (33)
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The system [Fe(ptz)6](BF4)2 and its (Fex Zn1−x ) mixed crystals was the first sys-
tem where the decay rates were measured in detail [204]. The rate kHL was found to
depend exponentially on the HS fraction γHS according to kHL = k0

HL exp(−αγHS)

leading to self-accelerated sigmoidal relaxation curves. In systems with strong short
range interactions the decay probability of each individual complex will also depend
on the spin state of the neighboring molecules. As a result correlations may build
up during the decay, and these, in turn, may change the decay probability of the
whole system.

In SC systems there is the unique possibility to prepare metastable HS states with
a random distribution of spin states of any HS fraction γHS employing the LIESST
effect. The preparation of such a random distribution of spin states makes use of
the fact that the excitation of a LS molecule by a photon is a random process. As
long as the optical density at the irradiation wavelength is low enough so that there
are no large intensity gradients of the exciting light inside the crystal, concentration
gradients during the light induced HS → LS conversion are negligible.

Figure 17 shows the single crystal spectra of [Fe(2-pic)3]Cl2 · EtOH before and
after irradiation at 647 nm (15 456 cm−1), that is into the tail of the MLCT transi-
tion, using a Kr+ laser. For this irradiation wavelength, the light induced LS → HS
conversion takes only a short time (<1 min), as was confirmed by comparison of
the HS bands after irradiation and at temperatures above the transition at 200 K
(details are given elsewhere [189]). From the spectra recorded at constant time in-
tervals of 5 min at 23 K included in Fig. 17, the full HS → LS relaxation curve shown
in Fig. 18a was extracted. The decay deviates strongly from single exponential with
the rate increasing with increasing fraction of LS molecules at the beginning. The
self-acceleration region extends to γHS > 0.5, at lower HS fractions the decay slows
down considerably but the rate is still not constant. The dashed line represents the

Fig. 17. Single-crystal absorption spectra of [Fe(2-pic)3]Cl2 · EtOH at 23 K before and after
irradiation with light at 15 500 cm−1 and HS → LS relaxation spectra in time intervals of
5 min (→ increasing time of intervals) following irradiation [189].
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Fig. 18. HS → LS relaxation curves γHS(t) at 23 K for various starting values of the HS
content γHS (t = 0) for [Fe(2-pic)3]Cl2 · EtOH. (a) The relaxation curve starting at γHS
(t = 0) = 1 (full circles). The dashed curve is calculated using mean field approximation.
(b) Time shifted relaxation curves for γHS (t = 0) < 0.5 (open circles) together with the
decay curve γHS (t = 0) = 1 from (a) as a reference represented by a spline function. The
corresponding simulated relaxation curves are plotted in (c), (b) [189]. The dashed line in
(c) is the same as in (a).

theoretical decay curve calculated in mean field theory as described below. The de-
viations from mean field theory becomes obvious at HS fractions γHS < 0.4. There
the actually observed decay of the metastable HS molecules is slower than pre-
dicted by mean field theory. The reason is that . . .HS–LS–HS–LS. . . correlations
are developing in the course of the decay, which stabilize the HS state. Mean field
theory does not take into account such correlations. In order to prepare starting
values lower than γHS (t = 0) = 1, irradiation at 676 nm (14 793 cm−1) close to the
minimum optical density of the isosbestic point at 14 400 cm−1 was carried out. By
varying the irradiation time (typically 5–15 min at 5 mW laser power) γHS (t = 0)
could be adjusted from 0.1 up to 1.0.

In Fig. 18b, the relaxation curves for γHS (t = 0) < 0.5 are plotted together with
the γHS (t = 0) = 1 curve Fig. 18a as reference curve. The decay curves are shifted
in time such that the t = 0 point matches the reference curve. Obviously, all these
curves start off at a faster rate than the rate of the reference curve at the same
HS fraction. The reason is that in all such cases where the decay starts at values of
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Fig. 19. Relaxation rate constants kHL (at
23 K) plotted as ln(kHL) vs the HS fraction
γHS for [Fe(2-pic)3]Cl2.EtOH. The full cir-
cles are the rates at the starting values γHS
(t = 0). The solid line is a spline function
to the γHS (t = 0) = 1 curve. The slope of
the straight dashed line through the full
circles is α = −4.5. The open triangles are
theoretical initial rates from Fig. 18d [189].

γHS (t = 0) < 1, the crystal still contains the metastable HS molecules in random
distribution, and the stabilizing correlations have not yet evolved. We consider this
observation as a direct proof of correlations building up during the decay.

The findings are quantified in Fig. 19 using Eq. (33). The solid line is the spline
through the logarithm of the rate constants of the reference curve. A straight line
(dashed) fits to the initial rates with starting values γHS (t = 0) < 0.5. These initial
rates at different HS fractions are interpreted as rates belonging to a system with a
random distribution of HS and LS molecules. Their dependence on the HS fraction
is the same as was observed in the system [Fe(ptz)6](BF4)2 mentioned above which
could be well explained within the frame of mean field theory. The open triangles
in Fig. 19 are initial rates calculated with the Monte Carlo method starting from
a random distribution of HS and LS molecules. The calculation of the dynamical
process in the tunneling region requires a simplified Monte Carlo procedure as
excitations from the LS to the HS state are negligible. The decay probability W(HS
→ LS) depends on the energy separation �EHL between the lowest vibronic HS
state and the LS ground state of the molecule in the crystal:

W (HS → LS) ∝ exp(η�EHL) (34)

In the approximation of a non adiabatic multi-phonon process in the limit of
strong vibronic coupling the parameter η ≈ ln(S)/�ω depends on the Huang–Rhys
parameter S, which is the reorganization energy in units of the quanta �ω of the ac-
tive vibrational mode [206]. Correlations as well as random distribution of molecules
in the HS state cause a distribution of energy separations by the short range inter-
action term and in turn a distribution of decay times. So the initial kHL value for
random distribution of HS states is an average rate constant and principally differ-
ent from its mean field value. But it turns out that these average values are very
close to the mean field values.

With the slope α = −4.5 of the dashed line (in Fig. 19) which was fitted to the ini-
tial decay rates, we can derive the parameter η from the expression α = −η2� from
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mean field theory. The resulting value of η comes out quite reasonable. Inserting
� = −175 cm−1, the definition of the Huang–Rhys factor S = 1/2 f (�QHL)2/�ω

and values for FeII (�QHL = √
6×0.18 Å, f = 2.0×105 dyn cm−1) [206] a frequency

of �ω = 290 cm−1 for the active mode is derived, which is the value expected for
the totally symmetric mode of the SC molecule.

Now we are in the position to simulate decay curves by the Monte Carlo method.
The rate of HS → LS transitions is defined by an adjustable scaling factor τHL:

kHL = 1
τHL

exp(η�EHL) (35)

The unknown time scaling factor was chosen large enough so that the result did
not depend on a further increase of τHL. Then the simulation is parameter free,
this means that the parameters used for the simulation of thermodynamic equilib-
rium transitions were also used here without any adjustments. The result is shown
in Fig. 18. In Fig. 18c the simulation with and without (dashed line) short range
interactions are plotted. The short range interactions stabilize the HS state for HS
fractions below γHS = 0.4. The decay curves starting from random distribution at
different HS fractions in Fig. 18d also show the characteristic features of the ex-
perimental one of Fig. 18b and the initial decay rates of these theoretical curves
plotted as open triangles in Fig. 19 justify the whole procedure, because they are
close to the mean field values we started out with. Correlation lengths have been
estimated in [189] to be less than 2–3 neighboring spheres, which is of the same
order as estimated in the step of the thermal transition.

It is clear that the rigorously simplified interaction scheme is far from reality. So
the interaction will be different for neighbors with different relative orientation and
to consider next and next nearest neighbors only is an arbitrary cut not justified in
the present structure. Nevertheless, we learn that the model Hamiltonian catches
the main features of the anomalous two-step transitions.

8.3.9 Nuclear Decay-induced Spin Crossover

Soon after the discovery of the Mössbauer effect more than forty years ago one
learned that this technique can be used to study the physical and chemical after
effects of the nuclear decay of 57Co by electron capture into 57Fe, 57Co(EC)57Fe,
in solid coordination compounds. Conventional 57Fe Mössbauer absorption spec-
troscopy uses radioactive 57Co (half-life 270 days) fused into a noble metal (Pt,
Rh) as the 14.4 keV γ -ray source; the emitted single line is swept over the hyper-
fine transition lines of the absorber material under study by normally moving the
source relative to the absorber. The recorded Mössbauer absorption spectrum gives
information on the electronic structure (valence and magnetic state) of the 57Fe
atoms in the absorber material [42c]. In so-called Mössbauer source experiments,
one uses (in case of 57Fe spectroscopy) the 57Co labeled coordination compound of
special interest as the Mössbauer source, normally fixed in a cryostat for variable
temperature measurements, and a single-line absorber (e. g. K4[Fe(CN)6] · 3H2O),
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which is mounted on a transducer and moved relative to the source. In this case, one
obtains a so-called Mössbauer emission spectrum, which bears information on the
electronic structure of the nucleogenic 57Fe atom during the lifetime of the 14.4 keV
nuclear state.

Already some thirty years ago, we have observed anomalous resonance lines
in the Mössbauer emission spectra of 57Co labeled coordination compounds which
could be assigned to metastable HS states of 57FeII in the corresponding compounds,
where FeII possesses a LS ground state at comparable temperatures [207–212]. Only
with the discovery of the LIESST effect, we were able to understand the occurrence
of such nuclear decay-induced metastable spin states. In analogy to the LIESST
phenomenon, where spin state conversion and trapping is induced by an external
light source, we speak here of “nuclear decay-induced excited spin state trapping”
(NIESST), where the radioactive decay serves as the intrinsic molecular excitation
source. A few examples will be recalled in the following.

The first observation of anomalous spin states arising from the 57Co(EC)57Fe
decay was made with phen complexes [208]. The system [M(phen)3](ClO4)2 with
M = 57Fex /Co1−x , x = 0.001 was studied by temperature dependent Mössbauer
absorption spectroscopy, and the one with M = 57Cox /Co1−x , x = 0.001 by time-
integral Mössbauer emission spectroscopy (TIMES). A selection of spectra for both
series is shown in Fig. 20.

The neat iron complex (M = Fe) is a typical FeII LS compound with 1A1 ground
state, whereas the CoII analog is HS with 4T1 ground state. If FeII is doped into the
host lattice of the CoII compound to only 0.1% as in the present case, the tris-phen
ligand field surrounding the FeII ions is still sufficiently strong such that the FeII

exhibits LS behavior at all temperatures under study; Fig. 20a shows a typical FeII-
LS quadrupole doublet between 300 K and 6 K. If, however, the CoII compound is
doped with radioactive 57CoII and used as a Mössbauer source against the single-line
absorber K4[Fe(CN)6], emission spectra are obtained as shown in Fig. 20b. Down to
ca. 250 K the emission spectra are much the same as the absorption spectra and show
essentially only the typical FeII-LS doublet (A) and a small fraction of FeIII-LS (B),
arising from the loss of a valence electron after the nuclear decay. Toward lower
temperatures two typical FeII-HS resonance doublets (C,D) appear with increasing
intensities at the expense of the FeII-LS doublet; the FeIII-LS doublet (B), however,
remains practically unchanged in intensity. According to the area fractions about
half of the nucleogenic 57Fe ions are “trapped” in the metastable FeII-HS state in
a strong field surroundings at ca. 10−7 s after the nuclear decay at 5 K.

If the ligand field strength is somewhat lowered such as in the 57Co-labelled
complex [Fe(phen)2(NCS)2] as the Mössbauer source, in which thermal LS ↔ HS
transition occurs with T1/2 ≈ 175 K [2], one obtains emission spectra as shown
in Fig. 21 [207]. Clearly, the dominant or even only signal at all temperatures
from 296 K down to 4.2 K is the FeII-HS quadrupole doublet, even at tempera-
tures below 175 K, where ST occurs to the FeII-LS ground state in the iron(II)
complex. A similar behavior was observed in the Mössbauer emission spectra of
[57Co/Co(bipy)2(NCS)2] [207, 208], [57Co/Co(2-CH3-phen)3](ClO4)2 · 2H2O [209],
[57Co/Co(2-CH2O-phen)3](ClO4)2 · 2H2O [210], [57Co/Co(2-pic)3]Cl2 · EtOH [211,
212] and [57Co/Co(ptz)6](BF4)2 [213], whereas the corresponding iron(II) com-



8.3 Highlights of Past Research 315

Fig. 20. (a) 57Fe Mössbauer absorption spectra of [57Fe/Co(phen)3](ClO4)2 as a function
of temperature vs 57Co/Rh (295 K) as source. (b) Time-integral 57Fe Mössbauer emission
spectra of a [57Co/Co(phen)3](ClO4)2 source as a function of temperature vs K4[Fe(CN)6]
(295 K) as absorber. Assignment: A FeII-LS, B FeIII-LS, C FeII-HS1, D FeII-HS2. In (a) the
source was moved relative to the absorber; in (b) the absorber was moved relative to the
fixed source mounted in the crystal. For direct comparison, the sign of the velocities must
be changed either in (a) or in (b) [214].

plexes exhibit thermal spin crossover. Obviously, in all these FeII SC systems
metastable FeII-HS states originating from the 57Co nuclear decay are “trapped”
and observed, to nearly 100% of all decay events, in the “Mössbauer window” of
ca. 100 ns after nuclear decay, whereas the ground state of FeII in the same ligand
surroundings at comparable temperatures is LS (1A1). Only with the discovery of
the LIESST effect (see Section 8.3.7) we are close to understand these NIESST
observations. The mechanism for both phenomena appears to be the same except
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Fig. 21. 57Fe Mössbauer emission spectra of a [57Co/Co(phen)2(NCS)2] source as a function
of temperature vs K4[Fe(CN)6] (298 K) [207].

for the initial step, which is by external light irradiation in the case of LIESST, but
57Co(EC)57Fe decay in the case of NIESST. The nuclear decay process is followed
by a loss of electrons from outer shells leading to highly ionized species. There is
very fast electron recombination (∼10−15 s) in conducting materials. In insulating
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materials, however, as in case of transition metal compounds of the present type
electron recombination is much slower such that in the Mössbauer emission experi-
ment with typical time window of ca. 10−7 s most of the nucleogenic iron species are
observed in the +2 oxidation state [214]. From time-differential Mössbauer emis-
sion spectroscopy (TDMES) we know that metastable FeII-HS states exist already
on the nanosecond time scale [215]. There are fast (�10−7 s) spin-allowed transi-
tions to the 1A1 ground state as well as fast (�10−7 s) ISC processes, which are
favored by spin–orbit coupling as in the LIESST mechanism, populating the 5E
and then the metastable 5T2 state (Fig. 14). The branching ratio for the two decay
paths (prompt decay to 1A1 and population of the 5T2, respectively) depends on
the ligand field strength and this in turn on �E0

HL (see Figs. 14 and 23). The weaker
the ligand field strength and therefore the smaller �E0

HL, the higher the population
of the 5T2 state. This agrees with the experimental results, where the population
of the 5T2 state is found to be much more pronounced in the Mössbauer emission
spectra of SC complexes than in a strong-field system like a [M(phen)3]2+ complex.
This “reduced energy gap law”, that is the smaller the energy difference �E0

HL be-
tween the lowest vibronic levels of the HS and LS states, the longer the lifetime of
the trapped 5T2 state, was demonstrated by Hauser [216] to hold for LIESST state
relaxation in FeII SC complexes.

To prove that the LIESST mechanism also holds for the NIESST phenomenon,
at least in its final step of ligand field state relaxations, we have constructed a coin-
cidence spectrometer for TDMES experiments for lifetime measurements between
ca. 5 ns and ca. 500 ns (resolution ≈3.5 ns) at variable temperatures down to 4 K
[217]. The TDME spectra of 57Co/tris-phen source prove that the intensity of the
metastable FeII-HS state increases the lower the temperature and the shorter the
time interval elapsed after nuclear decay. The lifetimes of one of the HS states de-
rived from the TDME spectra were similar to that from time-resolved optical spec-
troscopy on [Fe(phen)3]2+ embedded in a Nafion foil, for example 205 ns at 47 K for
the HS state after NIESST [215], and 188 ns at 50 K after LIESST [218]. The agree-
ment is very good and is strong evidence for the validity of the proposed mechanism.
Further time-resolved studies of NIESST and LIESST on the very same system, viz.
single crystal of [57Co/Mn(bpy)3](PF6)2 as Mössbauer source in TDMES and the
corresponding single crystal iron complex for LIESST using optical spectroscopy
yielded very similar results [219]. NIESST experiments have also been carried out
with [57Co/M(phen)3](ClO4)2 (M = Fe, Ni, Co, Zn) as Mössbauer sources versus
K4[Fe(CN)6] as absorber, in order to investigate the matrix influence, particularly
the effect of different M2+ radii leading to different local pressure, on the relaxation
rate of the metastable NIESST state (5T2). At a given temperature, the intensity of
the nucleogenic 57Fe-(HS) resonances was found to increase with increasing M2+
radius in the series M2+ = Fe (61 pm in LS state) < Ni (70 pm) < Co (74 pm) < Zn
(75 pm) [214]. A selection of relevant emission spectra recorded at 4.2 K are shown
in Fig. 22.

In view of the fact that FeII-HS has the largest M2+ radius of 78 pm of all metal
ions involved in this study, it is expected that the host with the smallest M2+ ion,
which is the FeII-LS with 61 pm, should have the lowest formation probability of
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LS
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Fig. 22. 57Fe Mössbauer emission spectra of [57Co/M(phen)3](ClO4)2 vs K4[Fe(CN)6].3H2O
recorded at 4.2 K. The spectra show increasing intensities of the nucleogenic 57Fe(II)-HS
doublets with increasing M2+ radius due to decreasing local pressure [214].

57Fe(II)-HS after NIESST. This is indeed the case (Fig. 22). The explanation can
again be derived from Fig. 23: The smaller r(M2+), the higher the local pressure,
the larger �E0

HL, the shorter the lifetime (or faster the decay) of the 57Fe(HS)-HS
state after NIESST.

Similar NIESST experiments have recently been performed with [57Co/
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Fig. 23. Mechanism of nuclear-decay-
induced excited spin state trapping
(NIESST) [17].

Co(bpy)3][MCr(ox)3] (M = Li, Na) and [57Co/Co(bpy)3][Mn2(ox)3] as Mössbauer
sources. These systems possess a cubic crystal structure, where the 57Co-labelled
cationic complex molecules sit in a cavity of slightly different dimension [220]. The
a axis is smallest (15.387 Å) in the network with Li+ and largest in that with MnII.
Thus it is expected that in the former case the relaxation of the nucleogenic 57Fe(II)-
HS state after NIESST is faster due to the somewhat higher local pressure in the
former than in the latter case. This has indeed been observed: the intensity of the
57FeII-HS resonances at a given temperature is larger in the system with Na+Cr3+
than in that with Li+Cr3+, but is largest in the host with (Mn2+)2 [221]. These results
are again well in accordance with the “reduced energy gap” law.

The NIESST effect was most recently studied for the first time in a CoII SC
compound, viz. [57Co/Co(terpy)2]X2 (X = ClO−

4 , Cl−), where terpy is the tridentate
ligand terpyridyl. The perchlorate derivative shows thermal spin transition, whereas
the chloride derivative is still in the LS state at room temperature [222]. The former
apparently possesses a weaker ligand field at the CoII ion than the latter compound.
In view of the “reduced energy gap law”, the perchlorate has a smaller �E0

HL value
than the chloride and should therefore yield a higher population of the FeII-HS state
after NIESST than the chloride. This has in fact been observed; the emission spectra
in Fig. 24, which were recorded at 100 K, show a much larger fraction of the FeII-HS
doublet for the perchlorate than for the chloride [223].

NIESST studies were also performed on [57Co/Co(py)2Ni(CN)4] (py = pyridine)
[224]. The corresponding 2D cyano coordination FeII–NiII polymer is known to
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Fig. 24. Mössbauer emission spectra at 100 K
for [57Co/Co(terpy)2]A2 (A = ClO−

4 , Cl−) [223].
Black doublet: Fe(II)-LS. Dark grey, light grey
doublets: Fe(II)-HS.

display an abrupt thermal ST 1A1 ↔ 5T2 around 190 K with a hysteresis of 12 K
[225]. The diamagnetic NiII ions are arranged in square planar configuration whereas
FeII ions have octahedral surroundings. An interesting electron transfer from FeII-
HS to FeIII-HS above 210 K has been observed by Mössbauer spectroscopy [224].

These examples convincingly demonstrate that the NIESST effect can be used to
probe local ligand field or chemical pressure differences in a very sensitive manner.

8.4 New Trends in Spin Crossover Research

8.4.1 New Types of Spin Crossover Material

Most of the mononuclear SC systems exhibit weak cooperative behavior that is the
spin state transitions are of a gradual type. If the transition is discontinuous, one usu-
ally observes a narrow hysteresis. The hysteresis becomes broader if the spin tran-
sition is accompanied by a crystallographic phase change like in [Fe(ptz)6](BF4)2
[153]. The crystal structure in this case is based on a molecular assembly of mononu-
clear entities mainly isolated from each other. A large number of ST materials of
a new type have been discovered during the past ten years with the idea of in-
creasing the cooperative interactions between the spin state changing molecules.
The aim is to be able to propose materials exhibiting very abrupt ST along with
strong thermal hysteresis effects around room temperature, these criteria being re-
quired for practical applications in displays and data processing [114]. Mainly two
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strategies have been explored to enhance the electronic communication between
the SC centers. The first one uses the tools of supramolecular chemistry and in
the design of mononuclear compounds exhibiting strong intermolecular interactions
such as hydrogen bonds or π–π interactions. [Fe(dpp)2(NCS)2] · pyridine with dpp
= dipyrido[3,2-a:2′3′-c]phenazyne (Scheme 1) exhibits sharp ST with a hysteresis
width of 40 K [226].

Scheme 1. Dipyrido[3,2-a:2′3′-c]phenazyne (dpp).

Its room temperature crystal structure reveals strong π–π interactions as a con-
sequence of the introduction of extended aromatic rings on the dpp ligand. In ad-
dition, van der Waals interactions were also found. Another example is given by
[Fe(bpp)2](CF3SO3)2.H2O which displays a ST with an unprecedented hysteresis
loop of 138 K [144, 227]. This behavior is believed to be due to the presence of a
strong hydrogen bonding network between the SC molecules, the anion and the
lattice solvent molecules. However, this strategy can be considered as rather ran-
dom as it is difficult to predict how the molecular contacts can be distributed in
the crystal lattice. A more rational approach consists of directly linking the active
SC centers by covalent bonds. For the resulting polynuclear compounds, it is be-
lieved that the molecular distortions accompanying the ST can be efficiently dis-
tributed throughout the whole crystal lattice by way of the ligands linking the SC
sites. Several compounds of this kind have been reported; most of them incorpo-
rate 1,2,4-triazole derivatives as ligands [228]. Dinuclear, trinuclear, tetranuclear
and pentanuclear SC compounds are now known [73, 187, 229–235]. An example
is [Fe2(totrz)5(NCS)4]2[Fe(totrz)2(NCS)2(H2O)2] · xH2O with totrz = 4-(p-tolyl)-
1,2,4-triazole. The structure consists of two binuclear iron(II) entities linked to a
non SC mononuclear unit via hydrogen bonding. This link allows an efficient com-
munication between the active binuclear units leading to a very sharp spin transition.
However, the cooperativity is not sufficient to induce hysteresis effect.

Iron(II) polymeric chain compounds of the following formula
[Fe(Rtrz)3](anion)2 · Sol with Rtrz = 4-R-1,2,4-triazole have also been prepared
[49, 114, 147–152]. They generally exhibit sharp ST accompanied by wide thermal
hysteresis around room temperature as well as an associated thermochromic effect
between violet in the LS state and white in the HS state, making them potential
candidates for practical application [114].

Their structure consists of iron(II) ions triply bridged by 1,2,4-triazole ligands
through the nitrogen atoms occupying the 1 and 2 positions as shown in Fig. 25.
The anions and the solvent molecules are located between the chains as it has been
evidenced by X-ray diffraction for [Cu(hyetrz)3](ClO4)2 · 3H2O [85].
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Fig. 25. Structure of the polymeric chain [Fe(4-R-1,2,4-triazole)3]2+ as deduced by EXAFS
spectroscopy [83].

[Fe(1,2-bis(tetrazole-1-yl)propane)3](ClO4)2 is the first SC chain compound
whose crystal structure has been determined by X-ray diffraction, both in the HS
and LS state (Fig. 26). Despite its polymeric nature, the spin conversion is very
gradual, with T1/2 = 130 K. The quasi absence of cooperativity has been attributed
to the non-rigidity of the bridging network. This compound reveals in addition the
LIESST effect, which is observed for an iron(II) linear chain compound for the first
time [88].

A strategy towards obtaining polymeric systems of higher dimensionality makes
use of ligands with several coordinating donor atoms. The use of multidentate lig-
ands and/or spacers between the coordinating atoms increase the possibilities to
raise up the dimensionality. The first ones can allow coordination to several metals
whereas the second ones can increase the degrees of liberty of the coordinating
groups in order to promote coordination in several directions. 2D and 3D SC net-
works have thus been obtained [228, 236–241].

[Fe(btr)2(NCS)2] · H2O represents the first 2D ST compound [236]. Its crystal
structure (Fig. 27) consists of iron(II) ions linked by btr ligands through the nitrogen

FeFe Fe Fe Fe

Fig. 26. View of the crystal structure of [Fe(1,2-bis(tetrazole-1-yl)propane)3](ClO4)2 along
the a axis [88]. C are shown in black and nitrogen in white.
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Fig. 27. Part of the crystal structure of [Fe(btr)2(NCS)2] · H2O (T = 293 K) [236].

Fig. 28. χMT vs T plot of
[Fe(btr)2(NCS)2] · H2O [236].

atoms occupying the 1 and 1′ positions. The thiocyanate anions are coordinated in
trans position whereas the non-coordinated water molecules are linked by hydrogen
bonding to the peripheral nitrogen atoms. The layers are connected by means of van
der Waals forces and weak hydrogen bond bridges involving the water molecules.
This compound reveals an extremely abrupt ST with a thermal hysteresis of 21 K
as we can see in Fig. 28
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Fig. 29. Part of the crystal structure of [Fe{N(entz)3}](BF4)2 (T = 293 K) [238].

[Fe{N(entz)3}2](BF4)2 with N(entz)3 = tris[(tetrazole-1-yl)ethane]amine, is the
first example of a ST grid with 1-R-tetrazole as ligand [237].

The coordination occurs through the N4 nitrogen atoms of the tetrazole rings
which are brought by the spider like ligand N(entz) (Fig. 29) [238]. Extremely abrupt
ST with thermal hysteresis was observed (T1/2 ↑ = 176 K and T1/2 ↓ = 167 K). Two
other interesting 2D ST compounds were also recently reported. The structure of the
catenane [Fe(tvp)2(NCS)2] · CH3OH with tvp = 1,2-bis-(4-pyridyl)ethylene consists
of two interpenetrating orthogonal 2D networks [239]. It reveals quite an abrupt
ST around 215 K. However, no hysteresis effect was observed. [Fe(py)2Ni(CN)4]
represents another example of a 2D compound revealing discontinuous ST [225].
Bridging cyano groups link the metal ions in this material.

[Fe(btr)3](ClO4)2 represents the first 3D ST compound [228]. Its structure
(Fig. 30) consists of iron(II) ions connected in the three directions of space through
the nitrogen atoms occupying the 1 and 1′ positions of the btr ligand. The non-
coordinated perchlorate anions are located in the voids of the 3D architecture. Upon
cooling, an unusual spin conversion occurring in two steps is observed (Fig. 31).

A detailed single-crystal X-ray analysis together with temperature dependent
57Fe Mössbauer spectroscopy have proved that this additional step was due to a
consecutive spin conversion in two crystallographically inequivalent iron sites [228].
The narrow hysteresis observed in the lower branch of the curve can be attributed
to cooperative interactions in the sense that no change of space group was observed.

2D and 3D SC catenanes were also recently obtained namely [Fe(bpb)2(NCS)2] ·
MeOH (bpb = 1,4-bis(4-pyridyl)butadiyne) [240] and [Fe(btzb)3](ClO4)2 (btzb =
1,2-bis(tetrazole-1-yl)butane [241].

Research of SC compounds with multifunctional properties is currently carried
out. The main goal is to obtain materials with original physical properties in ad-
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Fig. 30. Projection of the crystal structure of [Fe(btr)3](ClO4)2 along the c axis [228].

dition to spin crossover. For instance, [Co2L(NCS)2(SCN)2], L being a Schiff-base
macrocyclic ligand obtained from the [2×2] condensation of 3,6-diformylpyridazine
and 1,3-diaminopropane, represents the first compound exhibiting both antiferro-
magnetic coupling and spin crossover [242]. The crystal structure reveals a binuclear
unit where CoII ions are coordinated by two thiocyanate anions in trans position,
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Fig. 31. χMT vs T plot of
[Fe(btr)3](ClO4)2 [228].

one bound through the nitrogen atom and the other through the sulfur atom. SC
materials exhibiting fluorescence [243] or non linear optics properties [244] were
also recently reported, but the effect is observed only in solution.

8.4.2 New Effects and Phenomena

The past five years have seen an increasing number of reports dealing with new
effects and phenomena, bringing a new breath to the rapidly expanding field of ST
molecular materials.

8.4.2.1 Soft X-ray Induced Excited Spin State Trapping

A new way to change spin states using soft X-ray irradiation at the iron L2,3 edge
has been discovered for [Fe(phen)2(NCX)2] with X = S, Se [245] which are known
to undergo a ST around 200 K [53]. Irradiating a sample with a soft X-ray beam at
∼45 K result in the population of a metastable HS state as a consequence of the 1A1
→ 5T2 transition. Raising the temperature up to 80 K reveals thermal relaxation
to the LS state as expected from LIESST experiments. This phenomenon called
Soft X-ray Induced Excited Spin State Trapping (SOXIESST) is indeed analogous
to the LIESST effect but occurs at much higher energy and is, in this regard, very
comparable to the NIESST phenomenon. The energy involved is about 710 eV with
soft X-ray in comparison with (2–3 eV for a standard UV–visible source [245].

8.4.2.2 Ligand Driven Light Induced Spin Change

Recently, a promising process towards the obtaining of photo-induced ST at room
temperature was discovered [246–248]. The principle of the ligand-driven light-
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induced spin change (LD-LISC) is based on ligands containing potentially photo-
isomerizable groups. However, this effect could in principle be extended to any
other photochemical process like for instance bond forming/breaking rearrange-
ments [249]. The first studies have taken advantage of the cis–trans photoisomer-
ization of a C=C incorporated in a ligand coordinated to an iron(II) SC center like
for instance with stpy = 4-styrylpyridine (see Scheme 2) [246–248].

Scheme 2. cis–trans Photoisomerization of 4-styrylpyridine.

This primary photoinduced isomerization in the ligand causes a change of the
ligand field strength at the iron center as a secondary step. In the temperature
region where the isomers are present in both spin states of the complex com-
pound, the photoisomerization of the ligand directly results in SC behavior at the
metal center. The LD-LISC phenomenon has, for the first time, been observed for
[Fe(stpy)4(NCBPh3)2], for which the compound containing the ligand in trans con-
figuration exhibits quite an abrupt ST at 190 K, whereas the cis derivative remains
in the HS state upon cooling (Fig. 32) [250].

Photoisomerization of the stpy ligand, at 140 K, in the complex embedded within
a cellulose acetate matrix, was effectively shown, on the basis of UV–visible ab-
sorption measurements, to trigger the spin-state change of the iron(II) ions. Later,
the phenomenon was also observed at room temperature for [Fe(4-methyl-4′-trans-
styryl-2,2′-bipyridine)2(NCS)2] [251] and for two several iron(III) SC compounds
[252–254]. The limitation of the LD-LISC is that it has till now only been observed
in diluted samples (in solution or in thin films), the reason being the enormous me-
chanical distortion of the molecules upon cis–trans isomerization. Therefore, the SC
compounds under study do not show sharp thermal ST and the magnetic change
regarding irradiation is not expected to be pronounced. This weak point regarding
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Fig. 32. Temperature dependence of χMT for the trans (Ct)
and cis (Cc) forms of [Fe(stpy)4(NCBPh3)2] [250].
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practical applications could be overcome by embedding such materials in organized
media on the mesoscopic scale, such as Langmuir–Blodgett films [255, 256].

8.4.2.3 New Photophysical Effects

Following the discovery of a light induced bistability on [Fe(etz)6](BF4)2 (see Sec-
tion 8.3.7), several new photomagnetic phenomena have recently emerged. A light
induced thermal hysteresis (LITH), which is another example of light induced bista-
bility, has been discovered on the SC compound [Fe(pmbia)2(NCS)2] (pmbia = N -
(2-pyridylmethylene)aminobiphenyl) which undergoes a very abrupt thermal ST
around 170 K with a hysteresis of 5 K [156]. Irradiating the sample at 10 K with
green light resulted in the population of the LIESST state. The temperature was
then raised up to 100 K and lowered to 10 K under continuous irradiation. A wide
thermal hysteresis was observed (Fig. 33).

The same effect was also observed on the mixed crystal system
[Fe1−x Cox (btr)2(NCS)2] · H2O with x = 0,3; 0,5; 0,85 [257]. The explanation
of this effect given by Varret et al. [257, 258] is based on the rate equation [206]:

kHL = k∞ exp
(

−�EHL(γH = 0)

kBT

)
exp(−α(T )γHS) (36)

which at low temperatures is equal to the temperature independent tunneling limit
of Eq. (34). The energy separation �EHL at each site depends on the HS fraction
of the crystal and the distribution of spin states in the neighborhood as described in
the previous section. In mean field approximation only the dependence on the HS
fraction is taken into account and the decay rate is the same for all molecules. The
self-acceleration factor α(T ) ≈ 1/T was determined from experimental relaxation
curves. The steady state condition is the equation of detailed balance �up = �down,
where �up = (1 − γHS)kLH is the number of LS → HS excitations per second
and �down = γHSkHL the number of molecules per second going from HS to LS
state. In the temperature region, where all molecules are in the LS state in thermal
equilibrium, thermal excitation can be neglected and kLH is just proportional to the

Fig. 33. χMT vs T plot of
[Fe(pmbia)2(NCS)2]. The filled
circles represent the data obtained
at 10 K under irradiation. The open
circles represent the data on heating
and cooling modes under permanent
irradiation [156].
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Fig. 34. Graphical resolution of
Eq. (37) computed with α = 5.83.
The steady state values are given
by the intersects of the curve and
the straight line [257].

intensity of the laser light, the cross-section of the molecules times the probability to
excite the metastable HS state by intersystem crossing. The implicit state equation
for γHS at temperature T :

(1 − γHS)kLH = γHSk∞ exp
(

−�EHL(γH = 0)

kBT

)
exp(−α(T )γHS) (37)

depends on three terms kLH/k∞, �EHL (γHS = 0), and α(T ), which can be deter-
mined independently from the decay curve at this temperature.

The functions �up and �down are plotted in Fig. 34 visualizing the bistability of
the system. The steady state values are given by the intersects of the curve �down
and the straight line �up. The two points (S) are both stable at that temperature and
(U) is unstable with respect to small deviations of γHS. Starting from sufficiently low
temperatures the maximum of the �down curve is below the dashed line �up and
there is a single intersection at large HS fraction close to γHS = 1. With increasing
temperature the �down curve is shifting upwards. The bistability region begins as
soon as the �down curve intersects the �up line in three positions (S, U, S). Upon
further increasing the temperature, the �down curve shifts up further and shows
finally only one intersecting point with �up close to γHS = 0. This determines the
upper boundary of the bistability region. At a fixed temperature these different
situations can also be reached by changing the slope of the �up curve, which is
proportional to the light intensity. The type of hysteresis measured this way has
been called LIOH for light induced optical hysteresis.

Figure 35 shows the experimental γHS fraction of [Fe0.5Co0.5(btr)2(NCS)2] · H2O
versus temperature under continuous irradiation with light from a 100 W tung-
sten halogen lamp with an orange interferometric filter (100 nm wide, centered at
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Fig. 35. Experimental γHS data for
[Fe0.5Co0.5(btr)2(NCS)2] · xH2O
derived from optical reflectivity
measurements. The solid line
represents the steady state curve
calculated with αT = 263 K [257,
258].

600 nm). The γHS fraction was derived from optical reflectivity measurements. The
solid line is the steady state curve calculated with αT = 263 K as obtained from
the decay curves in this temperature region. The experimental hysteresis width is
much larger than the predicted one and the transitions are less steep as is usually
found for classical thermal hysteresis curves. The poor prediction of the width of the
hysteresis shows that mean field theory is not adequate to describe the interaction
in this compound.

The prominent aspect of this theory is that it shows that the presence of a light in-
duced hysteresis is the signature of cooperative effects among the SC centers. Thus,
this method constitutes a simple and direct tool to probe qualitatively the presence
of cooperativity for a given system provided the data are recorded in steady state
conditions. This is particularly relevant in case strong cooperative effects are not
directly observed, as indicated by a gradual thermal SC curve. This aspect has been
convincingly illustrated on the first tetranuclear FeII

4 [2×2] supramolecular SC grid
[234]. This compound undergoes quite a gradual thermal SC behavior but neverthe-
less does show a light induced thermal hysteresis. This proves unambiguously the
presence of cooperative effects within the tetranuclear unit unless the shape of the
SC curve indicated apparently weak cooperative effects among the active centers
[234].

A new photophysical effect called light perturbed thermal hysteresis (LiPTH)
was recently found for [Fe(phy)2](BF4)2 with phy = 1,10-phenanthroline-2-
carbaldehyde phenylhydrazone [259]. This compound shows a crystallographic
phase transition [260] and undergoes a ST around room temperature with a hys-
teresis. Continuous irradiation during heating and cooling modes in the region of
the thermal ST shifts the transition temperatures by ca. 10 K to the low tempera-
ture region using green light. Preliminary experiments indicate that a similar shift



8.4 New Trends in Spin Crossover Research 331

of the hysteresis to higher temperatures ought to be observed using red light. This
observation has been modeled in analogy to the theoretical description of the LITH
effect. Since the relaxation rate above 250 K is too fast for the formation of a stable
LIESST state, a light perturbed SC has been proposed.

Very surprising was the recent observation of the LIESST effect in the mixed crys-
tal system [Fe0.02Mn0.98(terpy)2](ClO4)2 (terpy = 2,2′:6′,2′-terpyridine) [261] with
ST temperature far above room temperature, contrary to what would be expected
from the “inverse energy gap law”, which predicts in this case a much shorter lifetime
for the LIESST state by ca. 15 orders of magnitude [195]. Clearly, this unexpected
observation escapes the normal LIESST mechanism (Section 8.3.7). Interestingly,
no LIESST effect was observed for the pure FeII compound for which one can ex-
pect a similar ligand field strength. It might be possible that the crystal lattice plays
an important role for this phenomenon as the host lattice [Mn(terpy)2](ClO4)2 is
suitable to welcome HS FeII ions produced after photo-excitation, which would re-
main trapped and stabilized in it. Further investigations are necessary to clarify this
behavior.

8.4.2.4 New Information from Pressure Experiments

Pressure represents a powerful tool in probing the cooperative interactions of SC
materials by estimating its effect on the transition temperature and the hystere-
sis widths of first order SC phase transitions. Pressure work on such materials has
started some thirty years ago but always at room temperature [262]. A new pressure
cell was designed [47] allowing the application of hydrostatic pressure in a controlled
manner. The first pressure experiments were carried out on [Fe(phy)2](BF4)2, a
mononuclear SC compound that was reported to see its hysteresis width decreasing
and increasing with pressure [263]. The increase of width with increasing pressure
contradicts the expectation derived from mean field theory. Allowing for a pres-
sure dependence of the elastic constants of the compound, the anomalous behavior
of hysteresis width could be interpreted [264]. Another mononuclear compound,
namely [Fe(pmaza)2(NCS)2] with pmaza = N -(2-pyridylmethylene)4-azophenyl,
was also pressurized. Its ST curve centered around 189 K flattened to a completely
LS behavior at 10.8 kbar [265]. A calibration curve can be obtained when plotting
the LS fraction versus pressure. In fact, this may be readily applied in a pressure
sensor.

Polynuclear SC compounds were also the subject of extended pressure studies.
Applying pressure on the chain compound [Fe(hyetrz)3](3-nitrophenylsulfonate)2
provokes a parallel shift upwards from 100 K to room temperature [149]. The
steepness of the ST curves remains constant along with the hysteresis width. This
lends support to the assertion that the cooperative interactions in this system are
confined within the iron(II) triazole chain [149]. A similar pressure effect is ob-
served on [Fe(hyptrz)3](4-chlorophenylsulfonate)2.H2O (hyptrz = hyptrz = 4-(3′-
hydroxypropyl)1,2,4-triazole), but in this case above room temperature (Fig. 36)
[266].

A peculiarity however is that the hysteresis width of this compound disappears
and then reappears under pressure. Fig. 37 shows the pressure dependence of the
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Fig. 36. γHS as a function of tempera-
ture for [Fe(hyptrz)3](4-chlorobenzenesulfo-
nate)2.H2O at different pressures. (•, P =
1 bar; �, P = 4.1 kbar; �, P = 5 kbar; �,
P = 5.3 kbar; �, P = 5.9 kbar; ??, P = 1 bar
after releasing the pressure) [266].
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Fig. 37. Pressure dependence of the LS frac-
tion for [Fe(hyptrz)3](4-chlorobenzenesulfo-
nate)2.H2O at room temperature [266].

LS fraction, γLS. A very steep HS → LS transition is observed at room temperature
around ∼6 kbar accompanied by a dramatic color change from white to deep purple.
This particularity could be used for an application such as a pressure sensor or
display [266]. Several theoretical models have been developed to rationalize such
phenomena of linear SC chain compounds [267–269].

A layered SC compound has also recently been studied by pressure [270, 271].
Application of hydrostatic pressure (≤10.5 kbar) on [Fe(btr)2(NCS)2].H2O, which
is known to show a discontinuous ST around ≈132 K [236], results in an unexpected
stabilization of the HS state. This result is surprising in the sense that pressure is
known to stabilize the LS state as a consequence of the smaller volume for the LS
iron(II) ion. On release of pressure, the HS state is found to be partially trapped.
After thermal relaxation of the metastable HS state obtained by light switching
(LIESST effect), which is obtained for this compound for the first time, a pure LS
state is obtained in contrast to the pressure experiments. This different behavior
supports the suggestion of a structural phase transition as the likely basis of the
pressure-induced HS state [270].
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New pressure effects were also recently observed on FeII compounds containing
bpym ligands, revealing an intriguing interplay between antiferromagnetic coupling
and SC behavior in the dinuclear compound [Fe(bpym)(NCS)2]2(bpym) [228] and in
the chiral FeII chain, [Fe(bpym)(NCS)2] [272]. A pressure induced SC was observed
for these compounds exhibiting a global antiferromagnetic coupling in the HS state
without pressure [273].

Structural insights can also be gained under perturbation conditions. This has
been done for [Fe(phen)2(NCS)2] and [Fe(btz)2(NCS)2] with btz = 2,2′-bi-4,5-
dihydrothiazine which were the first SC compounds to be structurally studied under
pressure [274]. At room temperature, a HS to LS transition is observed under high
pressure. The space group is retained and the overall molecular dimensions are very
similar to those of the structure of the LS form obtained at ambient pressure af-
ter thermal SC. Structural aspects of the metastable HS state produced after light
excitation were first examined some ten years ago [153] and are currently under
investigations on the [Fe(Rtz)6](anion)2 family with the goal to gain greater under-
standing of light induced phenomena in general [275].

List of Abbreviations and Symbols

bpb 1,4-bis(4-pyridyl)butadiyne
bpp 2,6-bis(pyrazol-3-yl)pyridine
bpy 2,2′-bipyridine
bpym 2,2′-bipyrimidine
bt 2,2′-bithiazoline
btr 4,4′-bis-1,2,4-triazole
btz 2,2′-bis-4,5-dihydrothiazine
btzb 1,2-bis(tetrazole-1-yl)butane
btzp 1,2-bis(tetrazole-1-yl)propane
dpp dipyrido[3,2-a:2′3′-c]phenazyne
etz 1-ethyltetrazole
hyetrz 4-2′-hydroxyethyl-1,2,4-triazole
hyptrz 4-3′-hydroxypropyl-1,2,4-triazole
mtz 1-methyltetrazole
phen 1,10-phenanthroline
phy 1,10-phenanthroline-2-carbaldehyde phenylhydrazone
2-pic 2-picolylamine
pmaza N -(2-pyridylmethylene)4-azophenyl
pmbia N -(2-pyridylmethylene)aminobiphenyl
ptz 1-propyltetrazole
py pyridine
stpy 4-styrylpyridine
terpy 2,2′:6′,2′-terpyridine
totrz 4-(p-tolyl)1,2,4-triazole
trz 1,2,4-triazolato
tvp 1,2-bis(4-pyridyl)ethylene
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HB(trz)3 hydrotris(1,2,4-triazolyl)borate
Htrz 4-H -1,2,4-triazole
N(entz)3 tris[(tetrazole-1-yl)ethane]amine
NH2trz 4-amino-1,2,4-triazole
5NO2-sal-N(1,4,7,10) 2,2′-(2,5,8,11-tetraazadodeca-1,1,1-diene-1,12-diyl)4-nitro-

phenolato

B Applied magnetic field
EFG Electric field gradient
ISC Intersystem crossing
LD-LISC Ligand-driven light-induced spin change
LIESST Light-induced excited spin state trapping
LIOH Light-induced optical hysteresis
LITH Light-induced thermal hysteresis
LIPTH Light-perturbed thermal hysteresis
MAS Mössbauer absorption spectroscopy
NIESST Nuclear decay-induced excited spin state trapping
SC Spin crossover
SOXIESST Soft X-ray-induced excited spin state trapping ST

Spin transition
TDMES Time-differential Mössbauer emission spectroscopy
TIMES Time-integral Mössbauer emission spectroscopy
ZFS Zero-field splitting
T1/2 Transition temperature

δ Isomer shift
�EQ Quadrupole splitting
γHS HS molar fraction
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[42] (a) P. Gütlich in Chemical Mössbauer Spectroscopy (Ed. R. H. Herber), Plenum, New
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[82] R. Boca, M. Vrbová, R. Werner, W. Haase, Chem. Phys. Lett. 2000, 328, 188.
[83] (a) A. Michalowicz, J. Moscovici, B. Ducourant, D. Cracco, O. Kahn, Chem. Mater.

1995, 7, 1833. (b) A. Michalowicz, J. Moscovici, O. Kahn, J. Phys. IV 1997, 7, 633.
[84] (a) N. V. Bausk, S. B. Erenburg, L. G. Lavrenova, L. N. Mazalov, J. Struct. Chem. 1995,

36, 925. (b) S. B. Erenburg, N. V. Bausk, V. A. Varnek, L. G. Lavrenova, J. Mag. Mag.
Mat. 1996, 157/158, 595. (c) S. B. Erenburg, N. V. Bausk, V. A. Varnek, L. N. Mazalov,
Sol. State Ionics 1997, 104-103, 571.

[85] Y. Garcia, P. J. van Koningsbruggen, G. Bravic, P. Guionneau, D. Chasseau, G. L.
Cascarano, J. Moscovici, K. Lambert, A. Michalowicz, O. Kahn, Inorg. Chem. 1997,
36, 6357.

[86] (a) T. Yokoyama, Y. Murakami, M. Kiguchi, T. Komatsu, N. Kojima, Phys. Rev. B 1998,
58(21), 14238. (b) N. Kojima, Y. Murakami, T. Komatsu et al. Synthetic Met. 1999, 103,
2154.

[87] A. Michalowicz, J. Moscovici, Y. Garcia, O. Kahn, J. Synchrotron Rad. 1999, 6, 231.



338 8 Spin Transition Phenomena

[88] P. J. van Koningsbruggen, Y. Garcia, O. Kahn, H. Kooijman, A. L. Spek, J. G. Haas-
noot, J. Moscovici, K. Provost, A. Michalowicz, L. Fournès, F. Renz, P. Gütlich, Inorg.
Chem. 2000, 39, 1891.

[89] M. Verelst, L. Sommier, P. Lecante, A. Mosset, O. Kahn, Chem. Mater. 1998, 10, 980.
[90] (a) S. Erenburg, N. V. Bausk, L. G. Lavrenova, L. N. Mazalov, J. Synchr. Rad. 1999,

6, 576. (b) S. B. Erenburg, N. V. Bausk, L. G. Lavrenova, L. N. Mazalov, Nucl. Inst.
Meth. Phys. Res. A 2000, 448, 351.

[91] J.-J. Lee, H. Sheu, C.-R. Lee, J.-M. Chen, J.-F. Lee, C.-C. Wang, C.-H. Huang, Y.
Wang, J. Am. Chem. Soc. 2000, 122, 5742.
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8196.
[179] V. Petrouleas, J.-P. Tuchagues, Chem. Phys. Lett. 1987, 137, 21.
[180] N. Sasaki, T. Kambara, Phys. Rev. B 1989, 40, 2442.
[181] A. Bousseksou, J. Nasser, J. Linares, K. Boukheddaden, F. Varret, J. Phys. I 1992, 2,

1381.
[182] B. G. Vekhter, J. Appl. Physics 1994, 75, 5863.
[183] D. Boinard, A. Bousseksou, A. Dworkin, J. M. Savariault, F. Varret, J.-P. Tuchagues,

Inorg. Chem. 1994, 33, 271.
[184] H. Spiering, T. Kohlhaas, H. Romstedt, A. Hauser, C. Bruns-Yilmaz, J. Kusz, P.

Gütlich, Coord. Chem. Rev. 1999, 109-192, 629.
[185] R. Jakobi, H. Spiering, L. Wiehl, E. Gmelin, P. Gütlich, Inorg. Chem. 1988, 27, 1823.
[186] H. Romstedt, H. Spiering, P. Gütlich, J. Phys. Chem. Sol. 1998, 59, 1353.
[187] J. A. Real, H. Bolvin, A. Bousseksou, A. Dworkin, O. Kahn, F. Varret, J. Zarem-

bowitch, J. Am. Chem. Soc. 1992, 114, 4650.
[188] T. Kohlaas, H. Spiering, P. Gütlich, Z. Physik B 1997, 102, 455.
[189] H. Romstedt, A. Hauser, H. Spiering, J. Phys. Chem. Solids 1998, 59, 265.
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[201] K. U. Baldenius, A. K. Campen, H. D. Höhnk, A. J. Rest., J. Mol. Struct. 1987, 157,

295.
[202] C.-C. Wu, J. Jung, P. K. Gantzel, P. Gütlich, D. N. Hendrickson, Inorg. Chem. 1997,

36, 5339.
[203] S. Hayami, Z.-Z. Gu, M. Shiro, Y. Einaga, A. Fujishima, O. Sato, J. Am. Chem. Soc.

2000, 122, 7126.
[204] A. Hauser, P. Gütlich, H. Spiering, Inorg. Chem. 1986, 25, 4245.
[205] (a) R. Hinek, H. Spiering, D. Schollmeyer, P. Gütlich, A. Hauser, Chem. Eur. J. 1996,

2, 1427. (b) R. Hinek, H. Spiering, P. Gütlich, A. Hauser, Chem. Eur. J. 1996, 2,
1435.

[206] A. Hauser, Chem. Phys. Lett. 1992, 192, 65.
[207] J. Ensling, P. Gütlich, K. M. Hasselbach, B. W. Fitzsimmons, Chem. Phys. Lett. 1976,

42, 232.
[208] J. Ensling, B. W. Fitzsimmons, P. Gütlich, Angew. Chem. 1970, 9, 637.
[209] J. Fleisch, P. Gütlich, Chem. Phys. Lett. 1976, 42, 237.



342 8 Spin Transition Phenomena

[210] J. Fleisch, P. Gütlich, Chem. Phys. Lett. 1977, 45, 29.
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9 Interpretation and Calculation of Spin-Hamiltonian
Parameters in Transition Metal Complexes

Frank Neese and Edward I. Solomon

9.1 Introduction

Experimental techniques that employ external magnetic fields such as magnetic sus-
ceptibility, electron paramagnetic resonance (EPR), electron nuclear double reso-
nance (ENDOR), magnetic circular dichroism (MCD) or Mössbauer spectroscopy
(MB) have been found to be extremely useful in studying the geometric and elec-
tronic structures of open shell transition metal ions [1]. They yield key contributions
to the understanding of the structures and reactivities of transition metal ions in
many areas of research ranging from material science to biochemistry and pharma-
cology. The underlying physical phenomena are related to the magnetic moment of
electrons that couple to the external magnetic fields and to the magnetic moments
of nuclei with a nuclear spin I that is different from zero. It should be noted that
electrons couple about 103 times stronger to an external magnetic field than nu-
clei. Therefore the techniques of EPR and nuclear magnetic resonance (NMR) are
rather different in their experimental requirements. EPR techniques employ radi-
ation in the microwave frequency region (hν ≈ 0.3 cm−1) while NMR transitions
are observed with radiofrequency radiation (hν ≈ 0.0004 cm−1).

Part of the success of magnetic techniques is that they yield detailed information
about the electronic ground state configuration of open shell molecules and this
information can be related to the properties of the chemical bonds in these systems.
Since the energy differences that are involved in the experiments are small relative to
the strength of typical chemical bonds (1–5 eV ≈ 8000–40 000 cm−1) the perturbation
provided by the method of observation is rather small. Therefore the electronic
structure of the ground state configuration is studied without complications due to
the presence of electronic relaxation (the change of electronic structure between the
two states connected by a spectroscopic transition). This is an important difference
to the spectroscopies performed in the visible and X-ray regions that employ photon
energies that are on the same order of magnitude or larger than the strengths of
the chemical bonds being studied. Therefore significant changes in the electronic
structure can take place upon excitation. Consequently, the information provided by
magnetic and optical techniques is complementary and much insight can be obtained
by simultaneously studying the optical and magnetic properties of transition metal
complexes. An important technique that connects the two spectroscopic domains
is MCD spectroscopy [2] that will not be developed in this review but will be used
in Section 9.5.

Magnetism: Molecules to Materials IV. Edited by Joel S. Miller and Marc Drillon
Copyright c© 2002 Wiley-VCH Verlag GmbH & Co. KGaA

ISBNs: 3-527-30429-0 (Hardback); 3-527-60069-8 (Electronic)
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An extremely important step in the development of magnetic spectroscopy was
the invention of the spin-Hamiltonian (SH) concept [3–12]. As will be described be-
low, the SH provides a means of parameterizing the experimental results in a simple,
unified language that makes no explicit reference to the geometric and electronic
structure of the compound under investigation. Instead, the SH contains only spin
operators and operates on a manifold of states that span the electronic ground state
configuration. This tremendous reduction in complexity compared to the problem
of analyzing the electronic and geometric structure of a given compound in detail
comes at the price of the introduction of free parameters. However, the number of
parameters introduced is not very large. By this procedure the analysis proceeds
in two steps. In the first step the SH parameters are extracted from experimental
data by fitting procedures. In the second, more complicated, step the relationship
between the SH parameters and the geometric and electronic structure of the com-
pound is elucidated using theoretical techniques. In many investigations the second
step is omitted and many empirical or semi-empirical relationships exist that ex-
plain trends in the measured SH parameters for classes of substances (for reviews
see for example [13, 14]).

The focus of this review is the second step of the analysis. Namely, we will address
the following questions:

• What is the relationship between the SH parameters and the electronic structure
of a transition metal complex?

• How can experimental information be used to analyze the electronic structure
contributions to SH parameters? And, finally, we will address the reverse ques-
tion

• How can the SH be predicted from first principles given the geometric structure
of a given complex and how accurate are the presently available procedures?

In this review we will limit ourselves to the most frequently encountered SH
parameters, namely the g-values, zero-field splittings (ZFSs) and hyperfine couplings
(HFCs). Excluded are properties such as quadrupole couplings or Mössbauer isomer
shifts [15, 16]. Also excluded are the subtleties that arise from exchange and double
exchange interactions in oligonuclear transition metal complexes [17].

The review is organized as follows. In Section 9.2 we will briefly introduce the
SH, its matrix elements and its eigenstates. Section 9.3 is devoted to a fairly detailed
derivation of general equations for the SH parameters of interest in terms of many
electron wavefunctions. The results are presented in Section 9.3.4. Subsequently
in Section 9.3.5 we will approximate the many electron wavefunctions by single
determinants to obtain a formulation in terms of molecular orbitals (MOs). In the
next step, presented in Section 9.4, the treatment will be further simplified to the
special case of ligand field theory. We will provide the relevant equations that arise
for SH parameters in dN systems and discusses the influence of covalency on these
parameters. Section 9.5 provides case studies of several prototypical transition metal
complexes that have been studied in detail experimentally. The emphasis here is
on the interplay between theory and experiment and the impact of excited state
spectroscopies for a concise understanding of SH parameters. Finally, Section 9.6
deals with computational approaches to predict SH parameters. The emphasis here
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is on computationally tractable algorithms that provide good numerical agreement
with experimental data.

9.2 The Spin-Hamiltonian

9.2.1 The SH

The basis of the magnetic phenomena to be discussed in this review is that electrons
as well as nuclei with a non-zero spin posses magnetic dipole moments that are
directly related to the presence of a non-zero spin. For a free electron the magnetic
dipole moment is [4, 18–20]:

Ì̂e = −βgeŜ (1)

where β is the Bohr magneton (1.3316 × 10−4 MHz T−1), ge is the free-electron
g-value (ge = 2.002 319 . . .) and Ŝ is the operator for the electron spin. Likewise a
nucleus with spin Î has the magnetic moment:

Ì̂N = βN gN Î (2)

where βN is the nuclear magneton (7.2521×10−8 MHz T−1), gN the nuclear g-value
and Î the operator for the nuclear spin. The classical interaction of a magnetic dipole
moment with a magnetic field is given by E = −Ì̂B which can be straightforwardly
translated into quantum mechanics.

In molecules that contain many electrons and nuclei with a spin different from
zero many complications arise that will be dealt with at length in Section 9.3. At
this point, it is sufficient to state the SH used in this review that effectively describes
the interactions of the various magnetic dipole moments with the external magnetic
field and among each other [4, 14, 18–20]:

Ĥspin = ŜDŜ + βBgŜ +
∑

A

ŜA(A)Î(A) − βN g(A)
N Î(A)B (3)

Here the first term describes the zero-field splitting (ZFS) and the second term
represents the electronic Zeeman effect (the interaction of the net spin magnetic
moment with the external magnetic field B). The third term represents the magnetic
interactions between the electrons magnetic moment and the nuclear spin magnetic
moments and the last term is the interaction of the nuclear spin magnetic moments
with the external magnetic field. The sum extends over all magnetic nuclei in the
molecule. In the last term the nuclear g-factor, g(A)

N , was taken to be a scalar with a
value that corresponds to that of the free atom. In reality this is not accurate because,
in molecules, deviations from this value occur and give rise to the phenomenon
of “chemical shielding” that is of fundamental importance in NMR spectroscopy
[19, 21]. However, the deviations are only of the order of parts per million (ppm)
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and together with the low values of the nuclear magneton relative to the electron
magneton the deviations of g(A)

N from their atomic values are unmeasurably small
in EPR and related experiments that are dealt with in this review. We have also
left out the NMR spin–spin coupling and the nuclear quadrupole interaction [22]
that are both not being dealt with in this review. In summary, the SH parameters
that we are concerned with are the elements of the 3 × 3 matrices D, g and A(A).
Note also that the operator Ŝ represents the net spin of the electron ground state
configuration (vide infra).

9.2.2 Eigenstates of the SH

The SH operates on a manifold of states |SM, M(I )〉, where:

|SM, M(I )〉 = |SM〉 ⊗
NA∏

A=1

|I (A)M (A)〉 (4)

where NA is the number of magnetic nuclei. |SM〉 is a function that exists in the
space spanned by the spin variables of the electron spin and |I (A)M (A)〉 represents
the nuclear spin degrees of freedom for nucleus A. Since for a spin S there are 2S+1
values of M (M = S, S − 1, . . . ,−S) and for a spin I (A) there are 2I (A) + 1 possible
values of M (A), the total dimension of the set of basis states is:

dim
({

|SM, M(I )〉
})

= (2S + 1)

NA∏
A=1

(2I (A) + 1) (5)

A subtle point is that the value of S usually coincides with the true value of the
total spin of the electronic ground state configuration denoted here as SGS . However,
this is not necessarily so and it is sometimes advantageous to choose a value S �= SGS
to set up an effective SH. S is therefore frequently called the “fictitious spin” [4].
Some of the complications that arise for S �= SGS have been discussed by Harriman
[8]. They are severe and often confusing; we prefer to only use a SH of the type
Eq. (3) if the condition S = SGS is fulfilled and we shall assume this throughout
this review.

The set of functions {|SM, M(I )〉} provides a complete, orthonormal set of func-
tions in which the eigenfunctions of the SH can be expanded. An exact solution to
the Schrödinger equation with the model SH:

Ĥspin� = W� (6)

is obtained by diagonalizing the matrix representation of the SH in the basis of the
states {|SM, M(I )〉}

(Hspin)K ,L =
〈
SMK , M(I )

K | Ĥspin | SML , M(I )
L

〉
(7)
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where each label K or L selects one combination of M and M(I ) values. The eigen-
states of the SH are written as:

�I =
∑

J

pJ I |SMJ , M(I )
J 〉 (8)

The matrix p collects the expansion coefficients that are the normalized eigen-
vectors of the matrix Hspin.

9.2.3 Matrix Elements of the SH

The matrix elements of the SH are straightforward to calculate with the use of the
standard quantum mechanical relations for angular momenta [23, 24]:

Ŝz |SM〉 = M |SM〉 (9)

Ŝ±|SM〉 = (Sx ± i Sy)|SM〉 =
√

(S ∓ M)(S ± M + 1)|SM ± 1〉 (10)

and corresponding relations for the nuclear spins. Instead of Ŝz and Ŝ± we will
frequently use the standard vector operator components Ŝ0 and Ŝ±1 that are defined
by:

Ŝ0 = Ŝz (11)

Ŝ±1 = ∓ 1√
2

Ŝ± (12)

This enables one to use the powerful apparatus of tensor operator theory in or-
der to simplify the calculation of matrix elements [24]. In terms of the spherical
components, a Cartesian second rank tensor T becomes:

T00 = Tzz (13a)

T01 = 1√
2

[Tzx − iTzy] (13b)

T10 = 1√
2

[Txz − iTyz] (13c)

T0–1 = − 1√
2

[Tzx − iTzy] (13d)

T–10 = − 1√
2

[Txz − iTyz] (13e)

T11 = 1
2

[Txx − Tyy − iTxy − iTyx ] (13f)
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T–1–1 = 1
2

[Txx − Tyy + iTxy + iTyx ] (13g)

T1–1 = 1
2

[−Txx − Tyy − iTxy + iTyx ] (13h)

T–11 = 1
2

[−Txx − Tyy − iTxy − iTyx ] (13i)

9.2.3.1 Zero Field Splitting

The matrix elements of the ZFS in terms of the spherical vector operator compo-
nents are:

〈SM, M(I )|ŜDŜ|SM ′, M′(I)〉 = δM(I ),M′(I)
∑
m,m′

(−1)m+m′
Dmm′

·
∑
M ′′

〈SM |Ŝm |SM ′′〉〈SM ′′|Ŝm′ |SM ′〉 (14)

with:

δM(I ),M′(I ) =
NA∏

A=1

δM(A),M ′(A) (15)

and δi j is the Kronecker delta (δi j = 1 for i = j and δi j = 0 otherwise). The
multidimensional Kronecker symbol in Eq. (15) returns zero whenever the nuclear
spin quantum numbers M (A) and M ′(A) for any magnetic nucleus A are different.

If a coordinate system is chosen that diagonalizes D, HZ F S can be rewritten:

ĤZ F S = D
[

Ŝ2
z − 1

3 S(S + 1)
]

+ E
[

Ŝ2
x − Ŝ2

y

]
(16)

D = Dzz − 1
2 (Dxx + Dyy); E = 1

2 (Dxx − Dyy) (17)

A constant 1
3 (Dxx + Dyy + Dzz)S(S + 1) is dropped because it shifts all levels

equally and the factor − 1
3 DS(S + 1) is introduced for convenience. In a proper

coordinate system x, y and z are chosen such that 0 ≤ E/D ≤ 1
3 [25]. Note that in

general Dxx + Dyy + Dzz �= 0; the D tensor is not in general traceless as is sometimes
stated (vide infra).

Alternatively, the matrix elements of the spin-operators are easily obtained from
the spin-matrices for spin S. For zero-field splitting one has:〈

SM, M(I )
∣∣∣∣ ∑

p,q=x,y,z

Ŝp Dpq Ŝq

∣∣∣∣SM ′, M′(I )

〉

= δM(I ),M′(I )

∑
p,q=x,y,z

Dpq(ÛS;pÛS;q)M M ′ (18)
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the spin matrices ÛS;x , ÛS;y and ÛS;z with matrix elements σ
S;p
M M ′ = 〈SM |Ŝp|SM ′〉 are

either tabulated [14] or can be obtained in an elementary way from Eqs. (9) and
(10):

σ
S;x
M M ′ = 1

2

(√
(S − M ′)(S + M ′ + 1)δM−1,M ′

+
√

(S + M ′)(S − M ′ + 1)δM+1,M ′
)

(19)

σ
S;y
M M ′ = i

2

(√
(S − M ′)(S + M ′ + 1)δM−1,M ′

+
√

(S + M ′)(S − M ′ + 1)δM+1,M ′
)

(20)

σ
S;z
M M ′ = δM M ′ M (21)

9.2.3.2 Electron Zeeman

The matrix elements of the electron Zeeman term are:

〈
SM, M(I )

∣∣∣∣β ∑
p,q=x,y,z

Bpgpq Ŝq

∣∣∣∣SM ′, M′(I )

〉

= δM(I ),M′(I )β
∑

p,q=x,y,z

Bpgpqσ
S;q
M M ′ (22)

9.2.3.3 Nuclear Zeeman

Likewise, the matrix elements of the nuclear Zeeman term are given by:

〈
SM, M(I )

∣∣∣∣ − βN g(A)
N

∑
p=x,y,z

Bp Î (A)
p

∣∣∣∣SM ′, M′(I )

〉

= −δA
M(I ),M(I ) δM M ′βN g(A)

N

∑
p=x,y,z

Bpσ
(A);p
M(A) M ′(A) (23)

where we have introduced a reduced Kronecker symbol:

δA
M(I ),M(I ) =

∏
B �=A

δM(B),M ′(B) (24)

which returns zero if two nuclear spin quantum numbers M (B) and M ′(B) for a nu-
cleus differ except when the nucleus is nucleus A.
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9.2.3.4 Hyperfine coupling

In analogy one finds for the matrix elements of the hyperfine interaction of the
electron spin with nucleus A:〈

SM, M(I )
∣∣∣∣ ∑

p,q=x,y,z

Ŝp A(A)
pq Î (A)

q

∣∣∣∣SM ′, M′(I )

〉

= δA
M(I ),M(I )

∑
p,q=x,y,z

A(A)
pq σ

S;p
M M ′σ

(A);q
M(A) M ′(A) (25)

9.2.4 Comments

The eigenstates of the SH depend explicitly on the strength of the external magnetic
field and its orientation, the elements of the g-matrix as well as on the zero-field
splitting and hyperfine parameters that are present to lift the degeneracy of the basis
states even in zero field. Once the eigenstates, �I , of the SH and the corresponding
energies, WI , are known all magnetic spectroscopic phenomena that occur within
the space spanned by the SH eigenfunctions can be easily and exactly calculated.
Thus, the problems associated with SHs are straightforward. They involve the cal-
culation of the matrix elements of the SH in a basis that only contains spin variables
and diagonalization of a complex valued matrix which is a standard problem of nu-
merical mathematics [26]. As will be described below, the solution of this problem
is much easier than the calculation of good approximations to the eigenstates of
the complete molecular Hamiltonian that not only contains spin variables but also
the space variables of the electrons and nuclei.

As the SH eigenstates and energies critically depend on the values of the SH
parameters, the goal of the theoretical investigation is to interpret them in terms of
the electronic and geometric structure of the compound under investigation. This
requires a deeper look at the physical mechanisms that govern the values of the
SH parameters as will be described in the next chapter.

9.3 The Physical Origin of Spin-Hamiltonian Parameters

9.3.1 Many-electron Wavefunctions and the Zeroth-order Hamiltonian

To set the stage for the developments to be presented below, we will first dis-
cuss the most commonly encountered “molecular Hamiltonian”, namely the Born–
Oppenheimer (BO) Hamiltonian [27]. It is convenient to use atomic units through-
out this review in which the elementary charge (e0), the mass of the electron (me),
Planck’s constant (�) and the permitivity of free space (4πε0) all assume unit values.
The unit of length is the Bohr radius:
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a0 = 4πε0�

me2
0

(26)

and the unit of energy is the Hartree:

EH = mee4
0

16π2ε2
0�2

(27)

In this units system the speed of light equals the inverse of the fine structure
constant:

c = α−1 = 137.03599 . . . (28)

and the Bohr magneton takes the value:

β = e0�

2mec
= α

2
≈ 3.64868 × 10−3 (29)

Finally, the nuclear magneton takes on the value:

βN = β
me

m p
= α

2
me

m p
≈ 1.98713 × 10−6 (30)

where the ratio of proton and electron mass is m p/me ≈ 1836.15274. The BO Hamil-
tonian collects the terms that arise in the non-relativistic theory from the kinetic
energies of the electrons as well as the electrostatic interactions of the particles
(we consider a system of Ne electrons and NA nuclei). The BO Hamiltonian does
not contain terms for the kinetic energies of the nuclei as these are assumed to be
“frozen”. The justification for this procedure comes from the much greater mass of
nuclei compared to electrons that consequently move much slower and from the
point of view of the electronic motion the nuclei are always static [27].

In atomic units the BO-Hamiltonian is:

ĤB O = −1
2

∑
i

∇2
i −

∑
i

∑
A

Z A

|RA − ri | + 1
2

∑
i

∑
j �=i

1
|ri − r j |

+1
2

∑
A

∑
B

Z A Z B

|RA − RB | (31)

Here i sums over electrons and A over nuclei. Z A is the nuclear charge of the Ath
nucleus at position RA and ri is the position of the ith electron. The first term rep-
resents the kinetic energy of the electrons, the second term is the nucleus–electron
attraction and the third term is the interelectronic electrostatic repulsion. The final
term is the internuclear repulsion and is a constant at any given nuclear configura-
tion.

The Schrödinger equation to be solved in the BO picture is:

ĤB O�(x1, . . . , xN ) = E�(x1, . . . , xN ) (32)
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where xi = (ri , σi ) represents the spatial and spin degrees of freedom for the ith
electron.

Obviously, the BO Hamiltonian is a linear operator. The BO eigenfunctions de-
pend on the coordinates of Ne-electrons and parametrically on the positions of the
NA-nuclei. Such Ne-electron wavefunctions are tremendously complicated objects
that cannot be exactly obtained for any but the smallest systems. However, efficient
methods of approximation exist as will be briefly described in Sections 9.6.1–9.6.3.
The many electron wavefunction � should obey the fundamental symmetries of the
BO Hamiltonian. First, it must be antisymmetric in the coordinates of the electrons
(Pauli principle).

�(x1, . . . , xi , . . . , x j , . . . , xN ) = −�(x1, . . . , x j , . . . , xi , . . . , xN ) (33)

Second it should be an eigenfunction to the total spin squared and the Ŝz com-
ponent of the total spin. Since the BO Hamiltonian does not explicitly contain spin
variables both Ŝ2 and Ŝz commute with ĤB O and consequently the eigenfunctions
of ĤBO are also eigenfunctions of Ŝ2 and Ŝz . Thirdly, � should transform under
one of the irreducible representations of the molecular symmetry group spanned
by the (fixed) nuclei. Again, the symmetry operations commute with ĤBO which
means that the eigenfunctions of ĤBO must also be eigenfunctions of the symmetry
operators [28].

For the purposes of this chapter we assume that a set of eigenfunctions of ĤB O
has been calculated either approximately or exactly. This set of functions can be
denoted as: {|a�M� SM〉}. Here � is the spatial irreducible representation under
which the state transforms and M� is used to distinguish different components of
� should it be more than one-dimensional. S is the total spin quantum number and
M the projection onto the z-axis. The remaining label “a” is used to distinguish
between different functions with identical �, M� , S and M . The energy of such a
state is Ea and all dim(�)(2S+1) components of a state |a�M� SM〉 are energetically
degenerate.

However, in the present review we will not make use of the spatial symmetry
and therefore use a simpler notation in which the spatial symmetry labels � and M�

are absorbed in the compound label α ≡ a�M� . Good use of spatial symmetry can
be made by using the powerful irreducible tensor operator method pioneered for
point groups by Griffith [29] and elaborated by others [2, 24, 30]. It is, however, our
desire to keep the notation as simple as possible and we will therefore only make
use of spatial symmetry where appropriate. Consequently, the set of functions is
written {|αSM〉}. We will refer to the 2S + 1 components (M = −S, . . . , S) of such
a state with total S as the “magnetic sublevels”.

To summarize this section, a set of many-electron wavefunctions, {|αSM〉}, is in-
troduced that either exactly or approximately diagonalizes the BO Hamiltonian,
ĤBO . At this point, each of the functions |αSM〉 is 2S + 1 fold degenerate with
the energy of state |αSM〉 being Eα . Typically, the energy differences between the
ground state configuration, |0SM〉, and excited configurations |αSM〉 (α = 1, 2, . . .),
is on the order of a few electron volts unless the ground state is orbitally degenerate
or almost degenerate in which case there are several configurations |αSM〉 which
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are close in energy and the theoretical description of the magnetic experiments be-
comes much more involved. However, typically the energetic separation between
the ground state configuration |0SM〉 and the excited configurations, |αSM〉, is much
larger than the energies employed in the experimental magnetic techniques and we
will assume henceforth that this is the case.

As has been pointed out above, the BO Hamiltonian is not able to describe the
lifting of the degeneracy of the magnetic sublevels and is therefore not complete
enough to describe magnetic experiments. Thus, the next step is to include the small
interactions either between the particles or between the particles and the external
fields that lifts the degeneracy of the magnetic sublevels and enables magnetic spec-
troscopists to observe transitions among them. We will first introduce the necessary
operators in the next section (Section 9.3.2) and then describe a convenient tech-
nique that allows us to include these operators in the electronic structure treatment
(Section 9.3.3) to arrive at a theory that has the same mathematical structure as the
SH of Section 9.2.

9.3.2 Perturbing Operators for Magnetic Interactions

The BO-Hamiltonian discussed in the previous section is sufficient to discuss the ma-
jor effects of structure and bonding of molecules except for those that contain very
heavy elements beyond the second transition row. However, as it does not contain
electric or magnetic fields or the spins of electrons and nuclei it is not appropriate
to discuss magnetic resonance experiments.

9.3.2.1 Zeeman Interaction

To introduce the external fields we make use of the so-called “minimal coupling”
[31–33] procedure. We will focus on the effect of an external magnetic field. The
introduction of external electric fields is of no interest in the present context and,
in addition, is straightforward. (Note however the interesting possibility of modi-
fying spin-Hamiltonian parameters experimentally through external electric fields.
A detailed discussion is available elsewhere [34].) In the case of a magnetic field,
the particle momenta are simply replaced by:

pi
substitute−→ i = pi + αAi (34)

where the momentum of the ith electron is pi = −∇ and Ai is the vector potential
defined in the Coulomb gauge (div Ai = 0). Note that α denotes the fine structure
constant here. For a uniform magnetic field it takes the form:

Ai = 1
2 B × ri (35)

If one replaces pi by i in the BO Hamiltonian the only change that is required
is in the electronic kinetic energy of the ith electron that is given by 1

2 2
i . Insertion
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of this Ansatz results in two additional one-electron terms in the Hamiltonian that
are:

ĤL B = α

2

∑
i

Bli

= α

2
BL (36)

which simply is the orbital Zeeman term that describes the interaction between the
external magnetic field and the magnetic moment caused by the orbital motion of
the electrons. The second term is:

ĤB B = α2

8

∑
i

(B × ri )
2 (37)

This familiar diamagnetic term is quadratic in the external magnetic field. It is
important for the calculation of magnetizabilities but is of no further consequence
in the present context.

Thus, even in this non-relativistic approximation there arises a coupling between
the orbital angular momentum of the electrons and the magnetic field. However,
molecules in non-degenerate electronic states have “quenched” angular momen-
tum. Mathematically this means that the expectation value of the orbital Zeeman
operator over the ground state wavefunction is zero. This arises because the orbital
Zeeman operator is purely imaginary while the BO wavefunction for an orbitally
non-degenerate state can always be chosen to be real.

Therefore there are a number of terms missing in the Hamiltonian that can be
systematically derived from the Dirac equation and its generalizations to more than
one particle [8]. Since the theoretical apparatus to systematically introduce the nec-
essary terms is beyond the scope of this review [8] the necessary operators will be
introduced in an ad hoc fashion. The necessary terms are given in the so-called
Breit–Pauli approximation and are correct to α2 with α = c−1 in atomic units.

The first term is the coupling of the spin-magnetic moment to the external mag-
netic field. The spin-Zeeman operator is:

ĤSB = αge

2

∑
i

Bsi

= αge

2
BŜ (38)

(We will not make any difference between the various g-values such as ge and
g′. Their difference is much smaller than the presently obtainable experimental or
theoretical accuracy. A full discussion is given in the monograph by Harriman [8].)

In contrast to the orbital Zeeman term it contains the additional “anomalous”
factor ge. From the fully relativistic treatment there arises a “kinetic energy correc-
tion” (relativistic mass correction) to the spin-Zeeman energy that is given by:

Ĥ RMC
SB = α3ge

2

∑
i

∇2
i Bsi (39)
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As this term is of order α3 it will give a correction of order α2 to the g-tensor
(Section 9.3.4.2).

9.3.2.2 Spin–Orbit Coupling

The largest, and most important additional term in the Hamiltonian is the spin–orbit
coupling (SOC) (a recent review is available [35]). The SOC describes a coupling of
the electronic spin-magnetic moment to the orbital magnetic moment of the same
electron as well as of the other electrons. In the Breit–Pauli approximation the SOC
operator is:

ĤSO = Ĥ (1)
SO + H (2)

SO (40)

The one electron part, Ĥ (1)
SO , is given by:

Ĥ (1)
SO = α2

2

∑
A

∑
i

Z A

|RA − ri |3 lA
i si (41)

where lA
i is the angular momentum of the ith electron relative to nucleus A.

lA
i = (ri − RA) × pi (42)

The two electron part consists of two terms and is given by:

Ĥ (2)
SO = −α2

2

∑
i

si

∑
j �=i

1∣∣�ri − �r j
∣∣3 {l j

i + 2lij } (43)

where l j
i is the angular momentum of electron i relative to electron j .

l j
i = (ri − r j ) × pi (44)

This form of the spin–orbit coupling was derived by Bethe and Salpeter [36] from
the Breit equation [37–39] and with classical arguments by Slater [40].The first term
in Ĥ (2)

SO arises from the movement of electron i in the Coulomb field of electron j
and the second term describes the coupling of the spin magnetic moment of electron
i with the orbital current of electron j (the spin-other orbit, SOO, contribution).
The one-electron term Ĥ (1)

SO has the familiar interpretation as described in popular
textbooks (e. g. Ref [41], page 1215).

This operator is evidently a complicated two-electron operator that is quite diffi-
cult to handle computationally. For this reason approximations to it are frequently
used. Historically the studies of Blume, Watson and Freeman [42–44], Horie [45]
and Elliot [46] suggest that, for atoms, it is a reasonable approximation to substitute
the full SOC operator by an effective one-particle operator. The main effects of the
two-electron part can thus be absorbed in the effective SOC coupling constant ζ ′.
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The detailed expressions are given by Blume and Watson and application to atoms
lead to good agreement with experiment for 2p and 3d elements [42–44].

A widely used approximation for molecules is to assume that the two electron
term basically provides a “screening” of the nuclear charge and that the overall
behavior of the SOC term is reasonably approximated by the one-electron term.
Furthermore, owing to the r−3 dependence, the one-electron SOC is rather local in
nature and it is a good approximation to only consider one-center matrix elements
of this operator. The effective SOC operator can thus be written:

ĤSO =
∑

A

∑
i

ξ(ri A)lA
i si (45)

where the function ξ(ri A) is usually taken to be:

ξ(ri A) = α2

2
Z A

eff

r3
i A

(46)

where ri A = ri − RA and ri A = |ri A|. The effective nuclear charges, Z A
eff, entering

this SOC Hamiltonian are semi-empirical parameters that need to be determined
either with reference to experimental results or to more accurate calculations. For
ab initio calculations a reasonable set of effective nuclear charges has been obtained
by Koseki et al. [47–49] for most of the periodic table and has been shown to give
good results for the SOC in a variety of molecules.

An alternative to the effective nuclear charge method is to define the SOC via
the “molecular potential”, V , as:

ĤSO = α2

2

〈
1
r

∂V

∂r

〉 ∑
i

li si (47)

This treatment leads to a SOC of the form:

ĤSO = ζ
∑

i

li si (48)

a one-electron SOC “constant” ζ which is most commonly determined from fitting
atomic spectra. In this way empirical values for the SOC constants of many ele-
ments in varying configurations and oxidation states have been determined (Sec-
tion 9.4.1.3).

For the potential one has to introduce either the Hartree–Fock or the density
functional theory potential which leads to one- and two-electron terms. However, at
least for the Hartree–Fock case, it has been shown that the results with the effective
potential method will tend to be 20–25% too large [42–44]. This is because the
important spin-other orbit contributions are missing from the two-electron part and
therefore the one-electron terms are insufficiently cancelled and the calculated SOC
will be too large.

The apparently simplest method to accurately approximate the full Breit–Pauli
treatment of SOC is the atomic-mean field method of Hess and co-workers [50].
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Their treatment is inspired by the Hartree–Fock method in which a two body inter-
action (the electron–electron repulsion) is approximated by a much simpler pseudo-
single particle operator (see Section 9.6.1). Finally, it is of course also possible to
introduce SOC via effective core potentials [51–58] but a detailed description is not
appropriate here.

Before leaving this section two further aspects of SOC should be mentioned.
First, we have used throughout the momentum pi rather than the gauge invariant
momentum i . Use of i will give rise to one- and two-electron gauge correction
terms to the SOC that lead to observable effects on g-values. We will derive the
correction to the effective one-electron operator in Eq. (45). Remembering the
definition of the angular momentum operator and inserting Eqs. (34) and (35) into
Eq. (45) we obtain:

ĤSOC =
∑
i,A

ξ(ri A)lA
i si

=
∑
i,A

ξ(ri A)(ri A × pi )si (49)

=
∑
i,A

ξ(ri A)(ri A × (pi + 1
2αB × ri ))si

We are interested in the correction to the SOC and therefore drop the terms
involving pi . We obtain the gauge-correction for the effective SOC operator as:

Ĥ GC
SOC = α

2

∑
i,A

ξ(ria){(si B)(ri Ar) − (si ri )(Bri A)} (50)

where we have used the vector identity a × (b × c) = (ab)b − (ab)c.
The second aspect of SOC concerns the use of the “atom-like” SOC operator:

ĤSL = λLS (51)

where L = ∑
i li is the total angular momentum and S = ∑

i si is the total spin.
This operator can be derived in the context of Russell–Saunders coupling for atoms
[59]. It is only valid within a single atomic term. For example, since it is proportional
to the total spin rather than incorporating the individual electron spins it will not
have matrix elements between states of different total spin, in contrast to the more
complete SOC operator. In addition, in molecules the total angular momentum L
is not a good quantum number and the advantage of using ĤSL instead of ĤSO is
less apparent. Moreover, the “many-electron SOC constant” λ that proves to be so
eminently useful in atomic spectroscopy [59] is rather poorly defined in a molecular
context where SOC of all atoms in the molecule should be considered. In contrast
to the atomic SOC constants ζ , λ is a signed quantity and related to ζ by:

λ = ± ζ

2S
(52)

where S is the total spin of the term of interest, the positive sign holds for a more
than half-filled shell and the negative sign otherwise.
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9.3.2.3 Operators for Coupling of Electron Spins

The direct magnetic dipole–dipole interaction leads to a familiar term in the Hamil-
tonian that reads:

ĤSS = α2

2

∑
i

∑
j �=i

si s j

r3
i j

− 3
(si ri j )(s j ri j )

r5
i j

(53)

where ri j = ri − r j and ri j = |ri − r j |. The contribution ĤSS therefore is a genuine
two-electron effect and its accurate calculation is anything but straightforward. It is
less well known that there also exists an electron–electron contact interaction that
is described by the operator:

Ĥ (c)
SS = −8π

3
α2

2

∑
i

∑
j �=i

si s jδ(ri j ) (54)

It is, however, possible to show [8] that this operator leads to no observable
consequences and can usually be omitted from the discussion.

9.3.2.4 Operators for Coupling of Electron and Nuclear Magnetic Moments

For the coupling of the nuclear magnetic moments with the electronic magnetic and
orbital moment we will consider three terms. The first term arises from the classical
magnetic dipole–dipole interaction of the electron spin magnetic moment with the
nuclear magnetic moments and is given by:

Ĥ (d)
SI = α

2
geβN

∑
A

g(A)
N

∑
i

si Î(A)

r3
i A

− 3
(si ri A)(Î(A)ri A)

r5
i A

(55)

The second term has no classical analogue and is given by the famous Fermi-
contact interaction (for a detailed discussion see Kutzelnigg [60]) term that reads:

Ĥ (c)
SI = α

2
8π

3
geβN

∑
A

g(A)
N

∑
i

si Î(A)δ(rAi ) (56)

Finally, the third term that we will consider is the coupling of the nuclear magnetic
moment with the orbital moment of the electrons. The relevant operator can be
derived from the magnetic dipole–dipole interaction equation with the result:

ĤL I = α

2
βN

∑
A

g(A)
N

∑
i

lA
i Î(A)

r3
i A

(57)
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9.3.2.5 Scalar Relativistic Operators

In addition to the magnetic terms described in the preceding paragraphs there are
two relativistic operators (the so called “scalar” relativistic effects) that may be con-
sidered [61]. These operators do not have a direct influence of the SH parameters.
However, their action leads to significant modification of the electron density and
the electronic wavefunctions close to the nuclei. Since several of the magnetic oper-
ators have a dependence on r−3 and δ(r) this is an important region and therefore
the scalar relativistic operators indirectly affect SH parameters.

The first term arises from the variation of the electron mass with velocity for
electrons that move close to the speed of light such as is the case for core electrons
in heavy elements. The mass-velocity term reads:

ĤMV = −α2

8

∑
i

∇4 (58)

The second scalar relativistic term is the so-called “Darwin” term has the form:

ĤDarwin = α2 π

2

∑
A

∑
i

Z Aδ(ri A) (59)

It is thought to describe a “Zitterbewegung” (”trembling motion”) of the elec-
tron.

9.3.2.6 Summary of Terms

In the preceding paragraphs the different terms have been described that need to
be added to the BO Hamiltonian in order to describe the leading terms in the SH,
namely, the zero-field splitting, the g-tensor and the hyperfine couplings. The addi-
tional terms cover the interaction of the spin- and orbital magnetic moments with
the external magnetic field (ĤL B , ĤSB and Ĥ RMC

SB , Eqs. 36, 38 and 39), the spin–orbit
coupling (Ĥ (1)

SO and Ĥ (2)
SO or the effective one-electron form, ĤSO , Eq. (45) together

with its gauge correction Ĥ GC
SOC , Eq. (50)), the spin–spin interaction (Ĥ (d)

SS and Ĥ (c)
SS ,

Eqs. 53 and 54), and the coupling of electron and nuclear magnetic moments (Ĥ (d)
SI ,

Ĥ (c)
SI and ĤL I , Eqs. 55, 56 and 57). In addition there are scalar relativistic operators

(ĤMV and ĤDarwin, Eqs. 58 and 59) that will influence the SH parameters indirectly.
In the approximations that we use here all of these operators with the exception of
Ĥ (d,c)

SS appear in the form of one-electron operators and this will lead to essential
simplifications in the derivation of explicit expressions for the SH parameters.

9.3.3 Theory of Effective Hamiltonians

Having defined the zero-order states and the necessary perturbing operators the
question arises how to incorporate these terms in the electronic structure treatment
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in a form that is compatible with the SH formalism. There are a variety of ways to
achieve this goal. In this section we will follow an elegant treatment that has been
advocated by McWeeny [9, 11, 12] and which is based on the partitioning treatment
of Löwdin [62, 63]. In this “effective-Hamiltonian” [62–65] treatment one defines
a zeroth order model space that already contains the main physics of the problem.
Then an effective Hamiltonian is set up in this basis that approximately incorporates
the effects of the additional terms in the Hamiltonian. This effective Hamiltonian
is then compared term by term to the matrix of the Spin-Hamiltonian and in this
way the SH parameters are defined in terms of matrix elements of the perturbing
operators over zeroth order (non-relativistic) wavefunctions.

The treatment starts by assuming that the Hamiltonian can be divided into a
major part and a perturbation:

Ĥ = Ĥ0 + Ĥ1 (60)

where in the present case Ĥ0 = ĤB O and Ĥ1 represents the sum of the various
magnetic operators described in Section 9.3.2. The full set of states {|αSM〉} is di-
vided into two sets: (i) the “a” set {|0SM〉} of the 2S + 1 function which make up
the orbitally non-degenerate electronic ground state and (ii) the “b” set {|αSM〉,
α = 1, 2 . . .} of excited state wavefunctions. Any wavefunction can then be repre-
sented as a superposition of the form:

� =
∑

M

ca
M |0S0 M〉 +

∑
αSM

cb
αSM |αSα Mα〉 (61)

The secular equations arising from the variation principle can be set up in matrix
form like:

Hc = Ec (62)

where c is the vector that collects the expansion coefficients and H is the matrix of
the complete Hamiltonian with elements:

HαSM,α′S′ M ′ = 〈αSM |Ĥ |α′S′M ′〉 (63)

Applying the partitioning into “a” and “b” sets Eq. (62) can be written in the
partitioned form:(

Haa Hab
Hba Hbb

) (
ca

cb

)
= E

(
ca

cb

)
(64)

The second equation can formally be solved for cb to give:

cb = −(Hbb − IE)−1Hbaca (65)

If this is inserted into the first set of equations one obtains:

Haaca − Hab(Hbb − IE)−1Hbaca = Eca (66)
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which is equivalent to the matrix eigenvalue equation of an effective Hamiltonian:

Heffca = Eca (67)

with

Heff = Haa − Hab(Hbb − IE)−1Hba (68)

According to McWeeny [12] the value of E in Eq. (68) can to a first approximation
be set equal to the unperturbed energy of the ground state E0. If it is assumed that
the basic set of states, {|αSM〉}, diagonalizes Ĥ0 we have for the inverse term in
Eq. (68) the equation (Hbb − IE0)

−1 = (Eα − E0)
−1 ≡ �−1

α which means that the
effective Hamiltonian assumes the form:

〈0SM |Ĥeff|0SM ′〉
= E0δM M ′ + 〈0SM |Ĥ1|0SM ′〉

−
∑

αS′ M ′′
�−1

α 〈0SM |Ĥ1|αS′M ′′〉〈αS′M ′′|Ĥ1|0SM ′〉 (69)

where �α = Eα − E0, is a positive quantity. The matrix of the effective Hamiltonian
is of the same dimension as the matrix of the SH. Yet it contains the effect of the
magnetic perturbations and the interaction of the ground state magnetic sublevels
with the excited states up to second order. In order to make the connection to the
SH formalism the parameters that occur in the SH must be chosen such that they
match one by one the matrix elements of the effective Hamiltonian in Eq. (69).

9.3.4 Equations for Spin-Hamiltonian Parameters

Having derived the necessary zeroth-order wavefunctions, the perturbing operators
and the method of effective Hamiltonians we are now in a position to derive ex-
plicit expressions for the SH parameters. A technically more advanced subject is the
calculation of the SOC matrix elements. This subject is developed in the appendix
(Section 9.8) and here we proceed with the derivation of the SH parameters.

9.3.4.1 Zero-Field Splittings

The ZFS appears in the SH as a term that is quadratic in the electron spin operators.
The terms that are candidates for contributing to the ZFS are therefore the first
order terms that contain products of electron spin operators (Ĥ (d)

SS , Eq. (53)) and the
second order terms that contain the spin operators but not the external magnetic
field or the nuclear spin which leaves ĤSOC (Eq. (45)).

The first order contribution to the D-tensor follows from the manipulations de-
scribed by Harriman and reads:
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D(SS)
µν = 1

2
α2

2(2S − 1)
(70)

·
〈
0SS

∣∣∣∣∑
i

∑
j �=i

r2
i jδµV − 3(ri j )µ(ri j )ν

r5
i j

{2szi sz j − sxi sx j − syi sy j }
∣∣∣∣0SS

〉

This contribution is symmetric and traceless as expected for a dipolar interaction.
It does, however, involve fairly complicated two electron matrix elements.

The second order contribution to the D-tensor is relatively difficult to derive and
we shall not repeat all details of the original derivation that has been described in
detail elsewhere [66]. The derivation shows that to second order the D-tensor has
three contributions that come from excited states with either the same spin as the
ground state and excited states with the total spin-quantum number increased or
decreased by one relative to the ground state. In order to see what is involved, the
contributions of excited states with the same spin as the ground state are derived
here. Let us initially focus on a single element of the D-tensor, namely Dzz. The
relevant SH matrix element is:

〈SS|Ŝ2
z Dzz |SS〉 = S2 Dzz (71)

This expression is to be compared with the second order part of Eq. (69) with
ĤSOC substituted for Ĥ1. We can focus on the case that M = S since we want to
derive an expression for Dzz . The second order equation is:

〈0SS|Ĥeff|0SS〉(2) = −
∑

b(Sb=S)

�−1
b 〈0SS|ĤSOC |bSS〉〈bSS|ĤSOC |0SS〉 (72)

To calculate the SOC matrix elements we make use of Eqs. (348) and (351) in
the appendix (Section 9.8) and get:

〈0SS|ĤSOC |bSS〉 =
〈

0SS

∣∣∣∣ ∑
i,A

ξ(ri A)l A
i,zsi,z

∣∣∣∣bSS

〉
(73)

which leads to:

〈0SS|Ĥeff|0SS〉(2) = −
∑

b(Sb=S)

�−1
b

〈
0SS

∣∣∣∣ ∑
i,A

ξ(ri A)l A
i,zsi,z

∣∣∣∣bSS

〉

·
〈

bSS

∣∣∣∣ ∑
i,A

ξ(ri A)l A
i,zsi,z

∣∣∣∣0SS

〉
(74)

If this expression is compared with Eq. (71) it is found that:

DSOC−(0)
zz = − 1

S2

∑
b(Sb=S)

�−1
b

〈
0SS

∣∣∣∣ ∑
i,A

ξ(ri Al A
i,zsi,z

∣∣∣∣bSS

〉

·
〈

bSS

∣∣∣∣ ∑
i,A

ξ(ri A)l A
i,zsi,z

∣∣∣∣0SS

〉
(75)
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where the superscript “SOC-(0)” has been added to indicate that this contribution
to the D-tensor derives from the SOC and excited states with Sb − S = 0 where S
is the total spin of the ground state and Sb is the total spin of excited state b. The
derivation is same for all other components of the D-tensor from this mechanism.
One finds [12, 66]:

DSOC−(0)
µν = − 1

S2

∑
b(Sb=S)

�−1
b

〈
0SS

∣∣∣∣ ∑
i,A

ξ(ri A)l A
i,µsi,z

∣∣∣∣bSS

〉

·
〈

bSS

∣∣∣∣ ∑
i,A

ξ(ri A)l A
i,νsi,z

∣∣∣∣0SS

〉
(76)

where (µ, ν = x, y, z) It is much more involved to derive expressions for the con-
tributions of excited states of different spin than the ground state. We merely quote
the result of the derivation [66] which gives for excited states of lower multiplicity
than the ground state:

DSOC−(−1)
µν = − 1

S(2S − 1)

∑
b(Sb=S−1)

�−1
b

·
〈

0SS

∣∣∣∣ ∑
i,A

ξ(ri A)l A
i,µsi,+1

∣∣∣∣bS − 1S − 1

〉

·
〈

bS − 1S − 1
∣∣∣∣ ∑

i,A

ξ(ri A)l A
i,νsi,−1

∣∣∣∣0SS

〉
(77)

and for excited states with a multiplicity that is higher than that of the ground state:

DSOC−(+1)
µν = − 1

(S + 1)(2S + 1)

∑
b(Sb=S+1)

·
〈

0SS

∣∣∣∣ ∑
i,A

ξ(ri A)l A
i,µsi,−1

∣∣∣∣bS + 1S + 1

〉

·
〈

bS + 1S + 1
∣∣∣∣ ∑

i,A

ξ(ri A)l A
i,νsi,+1

∣∣∣∣0SS

〉
(78)

All three second-order contributions have a very similar appearance. First they
involve a constant factor that is universal and only depends the multiplicity of the
contributing excited state. These factors take into account that the matrix elements
of the SH are calculated with the fictitious “pure” spin S whereas the perturbed
wavefunction contains contributions from states with differing S because the SOC
mixes different multiplicities. Since the matrix elements of the spin operators be-
tween the components of two multiplets with different total spin are different from
those of two multiplets with the same spin one has to correct for the inherent as-
sumption of the SH formalism that “everything” can be effectively described within
a single multiplicity. It is interesting to note that this can be so easily achieved with
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the prefactors of Eqs. (77) and (78). Furthermore, all three second order contribu-
tions involve matrix elements of the reduced SOC operator

∑
i,A ξ(ri A)l A

i,µ which,
is, however, multiplied by different spin operators. For states of the same spin, the
operator si,0 = si,z is involved which does not lead to spin-flips. For excited states
with a lower multiplicity the operator si,+1 is involved which does lead to spin flips
of spin-down electrons to become spin-up. This is what is needed to make the ma-
trix element of the SOC non-zero because the excited states of lower multiplicity
will have a smaller number of spin-up and a larger number of spin-down electrons
compared to the ground state. Similarly, the operator si,−1 takes care of excited
states with higher multiplicity than the ground state. It should also be noticed that
in Eqs. (76)–(78) only the standard components of the ground state and the excited
states with S = M occur. Thus instead of having to calculate (2S + 1)(2Sb + 1) ma-
trix elements only one matrix element is needed. This is a consequence of applying
the Wigner–Eckhard theorem in the form described in the appendix (Section 9.8).
In conclusion, the derivation has taken into account all of the complications that
arise from the spin parts of the wavefunctions. What remains is to specify the space
parts of the many electron wavefunctions and to evaluate the matrix elements of
the reduced spin–orbit operator

∑
i,A ξ(ri A)l A

i,µ that will govern the actual values of
the ZFS tensor elements. Note however, that the observable part of the ZFS arises
from a difference of ZFS-tensor elements (see Eq. (17)) and therefore it is more
important to correctly predict the relative values of the elements Dµν rather than
their absolute values.

In summary, the ZFS tensor has one first order and three second-order contri-
butions and the complete ZFS is given by:

Dµν = D(SS)
µν + DSOC−(0)

µν + DSOC−(−1)
µν + DSOC−(+1)

µν (79)

In general, in organic molecules made of light atoms with small SOC constants the
first term is thought to often dominate [67–72] and ZFSs of a fraction of a wavenum-
ber are common. The opposite situation is thought to be the case in transition metal
complexes where the ZFS can easily reach magnitudes of several wavenumbers.
Here the ZFS is thought to be dominated by the SOC term. Very little experience
exists in the calculation of the first order term D(SS)

µν . It is however recognized as a
genuine two-electron property that involves the average of the inverse third power
of the interelectronic distance which consequently needs to be accurately predicted
(especially for short interelectronic distances) in order to give good predictions for
the ZFS. Unfortunately even the best available wavefunctions do not appear to give
good values for the average interelectronic distance in the short range which lead
Kutzelnigg to describe the prediction of such two-electron observables as “almost
hopeless” with the presently available theoretical methodology [73].

9.3.4.2 g-Tensors

To derive expressions for the g-tensor we study the terms that involve the electron
spin and the magnetic field. Two terms already considered involve the product of
the spin magnetic moment and the magnetic field and will give rise to first order
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contributions in the sense of Eq. (69). The first term is the spin-Zeeman term ĥSB
(Eq. (38)). Comparing a typical element of the SH:

α

2
〈SS|gzz Bz Ŝz |SS〉 = α

2
Bz Sgzz (80)

with the matrix element of ĤSB :

〈0SS|ĤSB(z − component)|0SS〉 = αge

2
〈0SS|Bz Ŝz |0SS〉

= αge

2
Bz S (81)

it is evident that:

g(SB)
zz = ge (82)

and more generally one obtains from this mechanism:

g(SB)
µν = δµνge (83)

which is the familiar isotropic contribution to the g-tensor that equals the free-
electron g-value.

The second term of first order is the relativistic mass correction Ĥ RMC
SB . According

to the results of the appendix (Section 9.8) and using the key Eq. (348) one obtains
for the contribution to the g-tensor:

g(RMC)
zz = α2

2
ge

S

〈
0SS

∣∣∣∣ ∑
i

∇2
i szi

∣∣∣∣0SS

〉
(84)

and more generally:

g(RMC)
µν = δµν

α2

2
1
S

ge

2

〈
0SS

∣∣∣∣ ∑
i

∇2
i szi

∣∣∣∣0SS

〉
(85)

This contribution is evidently also isotropic and gives a diagonal correction to the
g-tensor or order α2. Due to the ∇2

i term that is proportional to the kinetic energy
T̂i = − 1

2∇2
i this is also sometimes called a kinetic energy correction. It will later

become evident that this correction is fairly small, on the order of a few hundred
ppm.

The third first order term arises from the gauge correction to the SOC (Ĥ GC
SOC ,

Eq. (50)). It is of a similar nature as the Ĥ RMC
SB term. For example, consider the

terms that are proportional to siz Bz :

Ĥ GC
SOC (zz) = α

2

∑
i,A

ξ(ri A)siz Bz{xi Axi + yi A yi } (86)
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which gives for the gzz element:

g(GC)
zz = 1

S

〈
0SS

∣∣∣∣ ∑
i,A

ξ(ri A)siz{xi Axi + yi A yi }
∣∣∣∣0SS

〉
(87)

and more generally:

g(GC)
µν = 1

S

〈
0SS

∣∣∣∣ ∑
i,A

ξ(ri A){ri Ari − ri A,µri,ν}siz

∣∣∣∣0SS

〉
(88)

This term, which was derived for the first time by Stone [74], is of the same order
of magnitude as the kinetic energy correction (ξ(ri A) is of order α2, Eq. (46)) and
frequently of different sign. Thus, as will be elaborated in Section 9.6.7 there is some
cancellation between the two small first order terms.

The most important term that is of second order is the cross term that arises in
Eq. (69) from the orbital Zeeman and the SOC terms (ĤL B , Eq. (36) and ĤSOC ,
Eq. (45)). In deriving this term it is important to note that the orbital angular mo-
mentum operator is diagonal in the total spin. Thus the sum over excited states in
Eq. (69) will only involve those states that have the same spin as the ground state.
This is an important and not widely acknowledged difference to the ZFS tensor
that incorporates excited states of the same spin as the ground state as well as spin
states of higher and lower multiplicity because the SOC operator is not diagonal in
the total spin. To derive the explicit form of the g-tensor ĤL B + ĤSOC is inserted
for Ĥ1 in Eq. (69). The matrix elements of ĤL B pose no difficulties while those of
ĤSOC between functions of the same total spin are given by Eqs. (348) and (351) of
the appendix. Finally, the g-tensor from this mechanism becomes:

g(O Z/SOC)
µν = − 1

S

∑
b(Sb=S)

�−1
b

{〈
0SS

∣∣∣∣ ∑
i

liµ

∣∣∣∣bSS

〉〈
bSS

∣∣∣∣ ∑
i,A

ξ(ri A)l A
iνsiz

∣∣∣∣0SS

〉

+
〈
0SS

∣∣∣∣ ∑
i,A

ξ(ri A)l A
iµsiz

∣∣∣∣bSS

〉〈
bSS

∣∣∣∣ ∑
i

liν

∣∣∣∣0SS

〉}
(89)

where S is the total spin of the ground state and the summation has been explicitly
restricted to excited states of the same spin. This term is a genuine second order term.
In order to evaluate it one has to have knowledge of the “standard components” of
the excited state multiplets (i. e. the states |bSM〉 with M = S) and has to evaluate the
matrix elements of the angular momentum and the reduced SOC operator between
these excited states and the standard components of the ground state multiplet. In
addition the transition energy from the ground state multiplet to the excited state
multiplet, �−1

b , enters in the denominator and it is important to know good values
for it in order for the second order sum to give accurate predictions. While the sum
over excited states is, in principal, infinite, it is fortunately usually the case that only
a few excited states make dominant contributions to the g-tensor.
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In summary, the g-tensor contains four main contributions and is written:

gµν = g(SB)
µν + g(RMC)

µν + g(GC)
µν + g(O Z/SOC)

µν (90)

The first term equal the free g-value. The first three terms are of first order and
the last term is of second order and usually dominates over the second and third
terms. Note that frequently rather than g itself the difference to the g-tensor of a
free electron �g = g − ge1 is discussed. There is one further complication in the
prediction of g-tensors (the gauge problem) that will be discussed in Section 9.6.7.1.

9.3.4.3 Hyperfine Couplings

For prediction of hyperfine coupling terms proportional to the product of the elec-
tron spin with the nuclear spin must be found. Two of these terms are immediately
evident from the list of perturbing operators and will contribute in first order to
the SH parameters.

The first term that will contribute to the HFC is the Fermi contact term Ĥ (c)
SI ,

Eq. (56). For illustrative purposes we make the comparison to the SH matrix el-
ements of the z-component of the HFC for a given nucleus A with nuclear spin
I (A):

〈SS, I (A) I |A(A)
zz Ŝz Î (A)

z |SS, I (A) I 〉 = A(A)
zz S I (A) (91)

Once more using Eqs. (348) and (351) of the appendix (Section 9.8) we obtain
for the matrix elements of the Ĥ (c)

SI at nucleus A:

〈0SS ⊗ I (A) I (A)|Ĥ (c)
SI |0SS ⊗ I (A) I (A)〉

= α

2
8π

3
geβN g(A)

N I (A)

〈
0SS

∣∣∣∣ ∑
i

sziδ(ri A)

∣∣∣∣0SS

〉
(92)

and consequently we find for the HFC:

A(A;c)
zz = 8π

3
α

2
1
S

geβN g(A)
N

〈
0SS

∣∣∣∣ ∑
i

sziδ(ri A)

∣∣∣∣0SS

〉
(93)

where the superscript (A, c) indicates the contact contribution to the HFC of nucleus
A. Again, this is a more general result. For the complete Fermi-contact terms one
finds:

A(A;c)
µν = δµν

8π

3
α

2
1
S

geβN g(A)
N

〈
0SS

∣∣∣∣ ∑
i

sziδ(ri A)

∣∣∣∣0SS

〉
(94)

This is the well-known isotropic contribution to the HFC of nucleus A and is
abbreviated A(A)

iso .
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The derivation of the second contribution proceeds along the exactly same lines.
It involves the dipolar hyperfine operator Ĥ (d)

SI . The result is an anisotropic contri-
bution of the form:

A(A;d)
µν = α

2
1
S

geβN g(A)
N

〈
0SS

∣∣∣∣ ∑
i

szi r
−5
i A {δµνr2

i A − 3ri A,µri A,ν}
∣∣∣∣0SS

〉
(95)

Note that this contribution is symmetric in the indices µ, ν and has a vanishing
trace as is characteristic for dipolar interactions.

The remaining contributions to the HFC are of second order. If we look for terms
that are either proportional to the electron spin or the nuclear spin but not both
and not on the magnetic field, one is left with the operators ĤSOC and ĤL I . The
derivation proceeds in the same way as shown for the second order contribution
to the g-tensor in Section 9.3.4.2 and will not be repeated here. The result is a
contribution of the form:

A(A;SO)
µ = − α

2S
geβN g(A)

N

·
∑

b(Sb=S)

�−1
b

{〈
0SS

∣∣∣∣ ∑
i

l A
iµr−3

i A

∣∣∣∣bSS

〉〈
bSS

∣∣∣∣ ∑
B,i

ξ(ri B)l B
iνszi

∣∣∣∣0SS

〉

+
〈
0SS

∣∣∣∣ ∑
B,i

ξ(ri B)l B
iµszi

∣∣∣∣bSS

〉〈
bSS

∣∣∣∣ ∑
i

l A
iνr−3

i A

∣∣∣∣0SS

〉}
(96)

where the superscript (A, SO) indicates the SOC contribution to the HFC of nucleus
A. Note, that – as for the g-tensor – only excited states of the same spin multiplicity
as the ground state contribute because the operator ĤL I is diagonal in the total spin.
In addition A(A;SO)

µν is not traceless. This is the reason why the trace of the total HFC
does not simply reduce to the isotropic Fermi contact term. For organic molecules
or the HFCs of light nuclei it may be a reasonable approximation to neglect A(A;SO)

µν

but for metal nuclei this contribution is fairly large and can reach a few hundred
MHz as will become evident in Section 9.4.

In summary, there are three contributions to the HFC of nucleus A which are
given by:

A(A)
µν = δµν A(A)

iso + A(A,d)
µν + A(A,SO)

µν (97)

The first two terms are of first order while the second term is of second order
and will only be significant for heavier elements with large SOC constants.

There is one further subtlety in the prediction of HFCs that arises from a special
term that has frequently been added to the ŜAÎ term of the SH. This term arises
in second order as a cross term between ĤSOC and Ĥ (d)

SI . It is immediately evident
that this term does not reduce naturally to the form ŜAÎ as it contains the electron
spin twice and is therefore proportional to Ŝ2 rather than to Ŝ itself. The question
arises in which sense this term can still be incorporated into the ŜAÎ term of the
SH. We will not pursue the general case [75] but rather state the result of Keijzers
and DeBoer [76] in Section 9.3.5.4.
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9.3.5 Formulation in Terms of Molecular Orbitals

Up to this point we have presented a fairly rigorous derivation of a many electron
theory of SH parameters. This section and the entire Section 9. 4 will be devoted to
approximations that simplify these equations up to the point where they are useful
for “back of the envelope” calculations which are important for gaining insight into
the main factors that influence SH parameters in transition metal complexes.

9.3.5.1 Many-electron Wavefunctions in Terms of Molecular Orbitals

We start by introducing a suitable set of molecular orbitals that are denoted by {ψ}.
The many electron wavefunctions are then constructed by distributing the Ne elec-
trons among these orbitals and taking linear combinations of Slater determinants in
order to make these configuration state functions eigenfunctions of the Ŝ2 operator.
A Slater determinant is given by [77]:

�(x1, . . . , xNe ) = 1√
Ne!

∣∣∣∣∣∣∣∣
ψ1(x1) ψ1(x2) . . . ψ1(xNe )

ψ2(x1) ψ2(x2) . . . ψ2(xNe )
...

...
. . .

...

ψNe (x1) ψNe (x2) . . . ψNe (xNe )

∣∣∣∣∣∣∣∣ (98)

It will be abbreviated as:

�(x1, . . . , xNe ) = |ψ1ψ2 . . . ψNe | (99)

A bar over a orbital indicates it is occupied by a spin-down electron while un-
barred orbitals are occupied by a spin-up electron. The Slater determinants are the
simplest form of many electron wavefunctions of the single configuration type that
take into account the Pauli principle because it changes sign whenever the coordi-
nates of a pair of electrons are interchanged.

Ultimately we will expand the space parts of the MOs in terms of a basic set of
auxiliary functions {ϕ} (”atomic” orbitals; “linear combination of atomic orbitals”,
LCAO expansion). The expansion is:

ψi (r) =
∑

p

cpiϕp(r) (100)

The expansion coefficients are collected in a matrix c that has to be determined
by some kind of energy minimization process as will be described in detail in the
subsequent section.

9.3.5.1.1 Configuration State Functions (CSF)
We will assume that the ground state of the system with total spin S can be rep-
resented by a single normalized Slater determinant with n doubly and m singly
occupied MOs. It is then said to be of the “high-spin type” and reads:

|0SS〉 = |ψ1ψ1ψ2ψ2 . . . ψnψnψo1 . . . ψom | (101)
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It will prove convenient to define the charge and spin densities of the ground state
wavefunction. The charge density of spin-up and spin down electrons is respectively:

ρα(r) =
n+m∑
i=1

|ψi (r)|2 (102)

ρβ(r) =
n∑

i=1

|ψi (r)|2 (103)

and therefore the spin density is:

ρα−β(r) = ρα(r) − ρβ(r) =
m∑

i=1

|ψoi (r)|2 (104)

and only involves the singly occupied MOs (SOMOs). In terms of the auxiliary set
{ϕ} the spin-density is:

ρα−β(r) =
∑
p,q

Pα−β
pq ϕp(r)ϕq(r) (105)

where the spin density matrix Pα−β is:

Pα−β
pq =

m∑
i=1

cpoi cqoi (106)

Likewise the excited states will be represented by many electron wavefunctions
of the single configuration type. An excited state in which an electron is promoted
from a doubly occupied into one of the singly occupied MOs is also an eigenfunction
of S2 and Sz with the same eigenvalues:

|I o j
i SS〉 = |ψ1ψ1 . . . ψiψo j

. . . ψnψnψo1 . . . ψom | (107)

Likewise, if an electron is promoted from one of the singly occupied MOs into
an empty orbital, a single determinant spin eigenfunction is obtained:

|I I a
oi

SS〉 = |ψ1ψ1 . . . ψnψnψo1 . . . ψa . . . ψom | (108)

The case where an electron is promoted from one of the doubly occupied MOs
into an empty MO is more complicated because it increases the number of unpaired
electrons by two. This means that the highest spin state that can be reached in this
configuration S + 1. This state is unique and is also represented by a single Slater
determinant.

|Qa
i S + 1S + 1〉 = |ψ1ψ1 . . . ψiψa . . . ψnψnψo1 . . . ψom | (109)
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By contrast, there are several CSFs with spin S. In general for u unpaired electrons
the number of CSFs with spin S is:

f S
u =

(
u

1
2 u − S

)
−

(
u

1
2 u − S − 1

)
(110)

Thus for u = 2S +2 we have f S
u = 2S +1. One of these excitations can be chosen

to be the spin singlet-coupling of the excited electron with the electron “left behind”
and reads:

|I I I a
i SS〉 = 1√

2

{|ψ1ψ1 . . . ψiψa . . . ψnψnψo1 . . . ψom |
+|ψ1ψ1 . . . ψaψ i . . . ψnψnψo1 . . . ψom |} (111)

For a ground state spin of S = 1
2 there is one additional singly excited spin-doublet

CSF that is given by:

|I V a
i

1
2

1
2
〉 = 1√

6

{
2|ψ1ψ1 . . . ψiψa . . . ψnψnψo1

|
− |ψ1ψ1 . . . ψiψa . . . ψnψnψo1 |
+ |ψ1ψ1 . . . ψaψ i . . . ψnψnψo1 |

}
(112)

This state corresponds to a triplet excitation from the doubly occupied MOs cou-
pled to a spin flip in the singly occupied MO.

For general ground state spin S the construction of the 2S + 1 singly excited
CSFs of spin S −1 is more involved but efficient and general methods exist and are
described in the books by Pauncz [78, 79].

These single configuration wavefunctions described above are not in general ac-
curate descriptions of the actual molecular states as they neglect excited state elec-
tronic relaxation. In addition they do not satisfy our assumption of Sections 9.3.3
and 9.3.4 and do not diagonalize the BO Hamiltonian, that is, we do neglect config-
uration interaction (CI) in this section. The single CSF representation of the many
electron wavefunctions is nevertheless extremely useful from a conceptional point
of view as it links physical observables to individual MOs.

9.3.5.1.2 Energies of CSFs
The energies of the CSFs can be chosen as the expectation value of the BO operator
and, in addition, can be measured relative to the ground state energy. Thus, the
energy denominators that are needed in order to evaluate the expressions set up
in Sections 9.3.5.2–9.3.5.4 are:

�b = 〈bSS|ĤB O |bSS〉 − 〈0SS|ĤBO |0SS〉 (113)

For example, for a system with a single unpaired electron (CSFs 107, 108, 111,
and 112), the energy denominators are given by:

�I o
i

= εO − εi − 〈ψiψi |r−1
12 |ψoψo〉 + 〈ψoψo|r−1

12 |ψoψo〉
+ 1

2 〈ψiψo|r−1
12 |ψiψo〉 (114)
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�I I a
o

= εa − εo − 〈ψoψi |r−1
12 |ψaψa〉 + 〈ψoψa |r−1

12 |ψoψa〉 (115)

�I I I a
i

= εa − εi − 〈ψiψi |r−1
12 |ψaψa〉 + 2〈ψiψa |r−1

12 |ψiψa〉
+ 1

2 〈ψoψa |r−1
12 |ψiψa〉 (116)

�I V a
i

= εa − εi − 〈ψiψi |r−1
12 |ψaψa〉 − 1

2 〈ψiψa |r−1
12 |ψiψa〉

+ 3
2 〈ψoψa |r−1

12 |ψoψa〉 (117)

Here and everywhere else the Mulliken notation for the two electron integrals
is used:

〈ψiψ j |r−1
12 |ψkψl〉 =

∫ ∫
ψi (r1)ψ

∗
j (r1)ψk(r2)ψ

∗
l (r2)

|r1 − r2| dr1dr2 (118)

The important point in Eqs. (114)–(117) is that the energy denominators that
enter the perturbation calculation are not simply given by orbital energy differences
but contain corrections with certain two electron integrals that are potentially large.
For example, the largest integrals are those of the “Coulomb type” for which i =
j and k = l in Eq. (118). These integrals can amount to ≈20 eV. The “exchange
type” integrals over MOs (i = k and j = l in Eq. (118)) are much smaller and
may range from ≈0–3 eV. They are therefore also not negligible. The correction
terms arise naturally from the changes in electron repulsion in the excited state.
As a consequence the states of type “III” and type “IV” are not degenerate in
zeroth order. This assumption is sometimes made in the literature in order to identify
canceling contributions. In fact, the splittings between states of these type play an
important role in spectroscopy [80]. Specifically, states of type “IV” are called “trip-
doublets” because they formally correspond to a triplet excitation from MO ψi to
MO ψa coupled antiparallel to a spin flip in the singly occupied MO ψo. A detailed
discussion of the subject has been given by Cory and Zerner [80]. (As a slight caveat
we note that the construction of type III and type IV states is not unique and a
linear combination of the two types could also be used as a many electron basis. This
would make a difference because the states interact through the Born–Oppenheimer
Hamiltonian. However, the canonical form used here has a particularly transparent
physical interpretation. Note also, that the energy denominators depend on how
exactly the MOs have been obtained. For these equations it was assumed that the
MOs have been determined by the ROHF procedure of Edwards and Zerner [81],
or an equivalent method.)

9.3.5.1.3 Spin–Orbit Coupling Matrix Elements
Using Slater’s rules [77] gives for the SOC matrix elements:〈

0SS

∣∣∣∣ ∑
A,i

ξ(ri A)l A
i,µs0,i

∣∣∣∣I
o j
i SS

〉
= −1

2

〈
ψi

∣∣∣∣ ∑
A

ξ(rA)l A
µ

∣∣∣∣ψo j

〉
(119)
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0SS

∣∣∣∣ ∑
A,i

ξ(ri A)l A
i,µs0,µ

∣∣∣∣I I a
oi

SS

〉
= +1

2

〈
ψoi

∣∣∣∣ ∑
A

ξ(rA)l A
µ

∣∣∣∣ψa

〉
(120)

〈
0SS

∣∣∣∣ ∑
A,i

ξ(ri A)l A
i,µsi,0

∣∣∣∣I I I a
i SS

〉
= 0 (121)

〈
0SS

∣∣∣∣ ∑
A,i

ξ(ri A)l A
i,µs−1,i

∣∣∣∣Qa
i S + 1S + 1

〉
= 1√

2

〈
ψi

∣∣∣∣ ∑
A

ξ(rA)l A
µ

∣∣∣∣ψa

〉
(122)

and in the particular case of S = 1
2 :〈

0
1
2

1
2

∣∣∣∣ ∑
A,i

ξ(ri A)l A
i,µ(i)s0,i

∣∣∣∣I V a
i

1
2

1
2

〉
= 1√

6

〈
ψi

∣∣∣∣ ∑
A

ξ(rA)l A
µ

∣∣∣∣ψa

〉
(123)

For real MOs these two matrix elements are purely imaginary and Hermitian.

9.3.5.1.4 Other One-electron Matrix Elements
For a general spin-independent one-electron operator of the form Ô = ∑

i ô(i) one
obtains:

〈0SS|Ô|I o j
i SS〉 = 〈ψi |ô|ψo j 〉 (124)

〈0SS|Ô|I I a
oi

SS〉 = 〈ψoi |ôψa〉 (125)

〈0SS|Ô|I I I a
i SS〉 =

√
2〈ψi |ô|ψa〉 (126)

and in the particular case of S = 1
2 :〈

0 1
2

1
2 |Ô|I V a

i
1
2

1
2

〉
= 0 (127)

9.3.5.1.5 Symmetry-adapted Single Excitations
In higher than Abelian point groups it may sometimes be necessary to use linear
combination of single excitations rather than the single excitations themselves in
order to make the CSFs transform properly under one of the irreps of the group. In
any configuration interaction treatment one would automatically obtain properly
symmetry adapted states. However, since we work with single CSFs here it is neces-
sary to take the appropriate precaution before entering the perturbation calculation
with the singly excited CSFs as a basis. The modifications that are needed to adapt
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the treatment to linear combinations of singly excited CSFs are rather minimal.
Consider for example the situation that:

|C SF〉 = cos η|I ok
i SS〉 + sin η|I ok

j SS〉 (128)

where i �= j . Then the SOC matrix element with the ground state becomes (compare
Eq. (119)):〈

0SS

∣∣∣∣ ∑
A,i

ξ(ri A)l A
i,µs0,i

∣∣∣∣C SF

〉
= −cos η

2

〈
ψi

∣∣∣∣ ∑
A

ξ(rA)l A
µ

∣∣∣∣ψok

〉

− sin η

2

〈
ψ j

∣∣∣∣ ∑
A

ξ(rA)l A
µ

∣∣∣∣ψok

〉
(129)

Closely analogous equations result for the other single excitations. We will use
equations of this form several times in Section 9.4.1.9 where we deal with highly
symmetric transition metal complexes. In the following derivations the possibility
of having linear combinations of CSFs as basis will, for simplicity, be suppressed
but it should be kept in mind that straightforward modifications of the resulting
equations are necessary if linear combinations of CSFs are taken as many electron
basis functions due to symmetry constraints. The general case of CI wavefunctions
where potentially every state contains contributions from all possible CSFs will be
dealt with in Section 9.6.2.

9.3.5.2 Zero-field Splittings

Consider first the contributions of the excited states of “type I” and “type II” to
the contribution DSOC−(0). Using the matrix elements Eqs. (119) and (120) they are
given by:

DSOC−(0)
µν = − 1

4S2


 ∑

i(doubly)o j

∑
(singly)

�−1
I

o j
i

L
io j

1µ
L

io j

1ν

+
∑

a(empty)o j

∑
(singly)

�−1
I a
o j

L
o j a
1µ

L
o j a
1ν


 (130)

where L
i j
1µ = Im

(〈
ψi

∣∣∣∣ ∑
A

ξ(rA)l A
µ

∣∣∣∣ψ j

〉)
. Note that L

i j
1µ = −L

ji
1µ. The states of

“type III” do not contribute to DSOC−(0) because they have zero SOC matrix el-
ements with the ground state (Eq. (121)). The contributions to the D-tensor of
type DSOC−(1) are also straightforward to evaluate because of the simple form of
Eq. (122). Thus, Eq. (78) becomes:

DSOC−(1)
µν = 1

2(S + 1)(2S + 1)

∑
i(doubly)

∑
a(empty)

�−1
Qa

i
Lia

1µLia
1ν (131)
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which is a slight extension of our earlier treatment [66] that only listed the con-
tribution DSOC−(0). The contributions of states of lower spin multiplicity are more
difficult to treat in the general case due to the necessity of choosing a spin coupling
among the open shell orbitals. First of all note that the “spin flips” where simply
one electron changes its spin in one of the open shell orbitals ψoi → ψoi

do not
contribute to the D-tensor because Loi oi

1µ
= 0 for real orbitals {ψ}.

9.3.5.3 g-Tensors

For the g-tensor the derivation of the relevant contributions in terms of MOs is
straightforward. We will first look at the first order terms. The RMC contribution
(Eq. (85)) becomes:〈

0SS

∣∣∣∣α2

4
ge

S

∑
i

∇2
i szi

∣∣∣∣0SS

〉
= α2

4
ge

S

m∑
i=1

〈ψoi |∇2|ψoi 〉 (132)

and therefore:

g(RMC)
µν = −δµν

α2

2
ge

S

m∑
i=1

〈ψoi |T̂ |ψoi 〉 (133)

This can be more conveniently and more generally expressed in terms of the
spin-density matrix (Eq. 106):

g(RMC)
µν = −δµν

α2

2
ge

S

∑
p,q

Pα−β
pq 〈ϕp|T̂ |ϕq〉 (134)

Similarly, for the gauge correction (Eq. (88)) one finds:〈
0SS

∣∣∣∣ ∑
i,A

ξ(ri A){ri Ari − ri A,µri,ν}szi

∣∣∣∣0SS

〉

= 1
2

m∑
i=1

〈
ψoi

∣∣∣∣ ∑
A

ξ(rA){rAr − rA,µrν}
∣∣∣∣ψoi

〉
(135)

and therefore:

g(GC)
µν = 1

2S

m∑
i=1

〈
ψoi

∣∣∣∣ ∑
A

ξ(rA){rAr − rA,µrν}
∣∣∣∣ψoi

〉
(136)

Again, it is more convenient to define this in terms of the ground state spin
density:

g(GC)
µν = 1

2S

∑
pq

Pα−β
pq

〈
ϕp

∣∣∣∣ ∑
A

ξ(rA){rAr − rA,µrν}
∣∣∣∣ϕq

〉
(137)
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For the dominant contribution g(O Z/SOC) it can readily be shown that only ex-
cited states of “type I” and “type II” contribute. This arises because for excited
states of “type III” the SOC matrix element with the ground state vanishes while
for “type IV” excited states it is readily shown that the orbital Zeeman matrix el-
ement vanishes (Eq. (127)). Thus, using the matrix elements Eq. (119) and (120),
the g(O Z/SOC) (Eq. (89)) becomes:

g(O Z/SOC)
µν = + 1

2S

∑
i(doubly)

∑
o j (singly)

�−1
I

o j
i

{
L

io j

2µ
L

io j

1ν
+ L

io j

1µ
L

io j

2ν

}
− 1

2S

∑
a(empty)

∑
o j (singly)

�−1
I I a

o j

{
L

o j a
2µ

L
o j a
1ν

+ L
o j a
1µ

L
o j a
2ν

}
(138)

where:

L
i j
2p ≡ Im

(〈ψi |l p|ψ j 〉
)

(139)

The positive sign for the first contribution arises from the s0 term in the SOC
operator. This is related to the fact that in order to create an excited state |I o j

i SS〉 a
spin down electron must be excited while in order to create an excited state |I I a

o j
SS〉

a spin up electron is excited. This accounts for the fact that d1 systems have negative
g-shifts while d9 systems have positive g-shifts (vide infra) as long as only d–d tran-
sitions contribute to the g-shift (no low lying charge transfer states). The same sign
change does not occur for the D-tensor because each term in Eq. (76) contains s0
twice. The present treatment is valid for orbitally non-degenerate ground states. In
orbitally degenerate states other techniques have been found convenient [82, 83].
Also, the treatment has be extended to third order by Atkins and Jamieson [84].

9.3.5.4 Hyperfine Couplings

The derivation of the relevant expressions for the HFC is also straightforward using
the results of Sections 9.3.4.3 and 9.3.5.1. We will write for the field gradient integral
over MOs:

Fi j
µν;A =

〈
ψi |r−5

A {δµνr2
A − 3rA,µrA,ν}|ψ j

〉
(140)

and for the proportionality constant:

P A = α

2
geβN g(A)

N (141)

For the Fermi contact term Eq. (94) becomes:

A(A)
iso = 8π

3
1

2S

α

2
geβN g(A)

N

∑
pq

Pα−β
pq 〈ϕp|δ(r − RA)|ϕq〉

= 4π

3S
P Aρα−β(RA) (142)
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which is the familiar result, that the Fermi term is directly proportional to the spin
density at the nucleus in question. In the same way one finds for the dipolar HFC
from Eq. (95) the expression:

A(A;d)
µν = 1

2S
P A

∑
pq

Pα−β
pq

〈
ϕp|r−5

A {δµνr2
A − 3rA,µrA,ν}|ϕq

〉
(143)

Thus, from the knowledge of the spin density matrix and the field gradient inte-
grals the dipolar HFC tensor can be readily calculated.

The most difficult term is the SO contribution to the HFC, Eq. (96). Using the
matrix elements in Eqs. (119) and (120) one gets:

A(A;SO1)
µν = 1

2S
P A

{ ∑
i(doubly)

∑
o j (singly)

�−1
I

o j
i

{
L

io j

3µ
L

io j

1ν
+ L

io j

1µ
L

io j

3ν

}

−
∑

oi (singly)

∑
a(empty)

�−1
I I a

oi
{Laoi

3µ
Laoi

1ν
+ Laoi

1µ
Laoi

3ν

}}
(144)

where:

Li j
3µ

= Im〈ψi |l A
µr−3

A |ψ j 〉 (145)

Note that, again, states of higher or lower spin multiplicity do not contribute to
the second order HFC because operator ĤL I is diagonal in the total spin. This equa-
tion has obvious similarities with the second order g-tensor expression, Eq. (138),
at the same level of approximation. The main difference is that instead of the or-
bital Zeeman operator which gives rise to the L2 integrals the nuclear-spin/electron
orbit operator contributes and gives rise to the L3 integrals. These also feature an
angular momentum operator but with two important differences to the L2 terms:
(a) the angular momentum is measured relative to nucleus A for which the HFC
is calculated and (b) there also is a factor r−3

A present which makes these integrals
much shorter in range than the corresponding L2 integrals, i. e. only the parts of
the MOs that are centered close to nucleus A will contribute to the L3 integrals
while pretty much all parts of a given MO pair will contribute to the L2 integrals.
This subject will be further discussed in Section 9.4 in connection with ligand field
theory.

The second SOC contribution to the HFC arises from a cross term between the
electron–nuclear dipole–dipole Hamiltonian and the SOC. Below we have adapted
the equation obtained by Keijzers and DeBoer for a single unpaired electron (S = 1

2 )
to the present treatment (”o” is the index of the singly occupied MO). The result
is:

A(A;SO2)
µν = −P A


 ∑

i(doubly)

�−1
I o
i

∑
κ,τ=x,y,z

εκτµFio
κν Lio

1τ

−
∑

a(empty)

�I I a
o

∑
κ,τ=x,y,z

εκτµFao
κν Lao

1τ


 (146)
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where εi jk is the Levi–Civitta symbol that is +1 for an even permutation of i, j, k, −1
for an odd permutation and zero otherwise. One approximation that has been made
is that only excited states of the same spin as the ground state contribute to A(A;SO2)

µν .
This will, in general, not be true, as both the HFC operator and the SOC operator
depend on the electron spin and will mix a state of spin S with states of spin S′−S =
0, ±1.

9.4 Ligand Field and Covalency Effects on SH Parameters

In this section we will apply the molecular orbital expression derived in Sec-
tions 9.3.5.2–9.3.5.4 to the specific case of transition metal ions in dN electron config-
urations. Some further approximations will be introduced and the relation between
MO theory, ligand field theory (LFT) and crystal field theory (CFT) should become
apparent. Given the large number of possible geometric and electronic structures
we restrict the treatment to a few typical electronic structures met in inorganic com-
plexes. Extensive collections of experimental data can be found elsewhere [85–87].

9.4.1 Molecular Orbitals for Inorganic Complexes

We consider a typical mononuclear transition metal complex and focus our atten-
tion on the five MOs that derive mainly from the metal d-orbitals. To lower energy
there will be doubly occupied mainly ligand based orbitals that need to be taken
into account in more refined treatments and to higher energies there will be the
metal (n+1)s and (n+1)p orbitals as well as unoccupied orbitals of the ligands. The
focus on the five metal-derived MOs is referred to as the “ligand field limit” and is
distinguished from the MO description which includes at least the valence orbitals
of all atoms in the complex.

The metal d-derived MOs are written:

ψi = Ni {ϕdi + κiϕLi } (147)

where for simplicity it is assumed that each MO ψi contains contributions from
only one (normalized) metal derived d-orbital ϕdi . ϕLi is a suitably constructed,
normalized ligand group orbital (LGO). Specific forms for a variety of complex
geometries have for example been given by Ballhausen and Gray [88]. The factor
Ni is the normalization constant and is given by:

Ni = 1√
1 + κ2

Li + 2κi SMi,Li

(148)

where SMi,Li is the overlap integral between ϕdi and ϕLi and κi is a factor that
determines the amount of ligand character that is mixed into the mainly metal-d
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derived MOs, i. e. it relates to the covalency of the metal–ligand bond. This factor
can be substantially different for different MOs in which case the bonding is said to
show an “anisotropic covalency”. It is more convenient to absorb the normalization
factor into the expansion coefficients and write:

ψi = cMiϕdi + cLiϕLi (149)

where cMi = N−1
i and cLi = κi N−1

i . Note that c2
Mi + c2

Li = 1 only for SMi,Li = 0.
In general the metal–ligand overlap will not be negligible and the normalization
condition is c2

Mi + c2
Li + 2cMi cLi SMi,Li = 1. Note also that the metal d-derived

MOs are usually antibonding. This means that the metal–ligand overlap integral is
negative (destructive interference). An exception is the presence of metal–ligand
backbonding where the overlap will be constructive.

The “crystal field limit” of the ligand field is obtained by letting the metal-derived
orbitals be of pure metal character, i. e. κi → 0 for all i .

9.4.2 Ligand Field Energies

Ligand field theory has two important limits which are called the strong-field limit
and the weak field limit respectively. The strong field coupling scheme treats the
effects of the crystal field first and then takes into account SOC and configuration
interaction while in the weak field case the opposite route is taken and the atomic
states of the ion are modified by SOC and crystal field effects in this order. It is the
strong field case that directly maps onto the MO theory described so far. I.e. each
electronic state of the complex is described by a single configuration wavefunction
that is constructed from the five metal based MOs described in the previous section.
Configuration interaction between these strong field configurations can be admitted
at a later stage but for the present purposes it is sufficient to consider these “pure”
strong field configurations as a basis of our treatment. Furthermore we will take
the crystal field limit (κi → 0) in order to derive the energies of these strong field
configurations.

The energy of a single Slater determinant composed of the crystal field orbitals
is given by:

E =
5∑

i=1

ni 〈ψi |ĥ|ψi 〉 (150)

+ 1
2

5∑
i=1

5∑
j=1

ni n j 〈ψiψi |r−1
12 |ψ jψ j 〉 − (nα

i nα
j + nβ

i nβ
j )〈ψiψ j |r−1

12 |ψiψ j 〉

where ni is the occupation number of the ith MO (ni = 0, 1, 2) and nα
i = 0, 1

indicates whether the ith MO is occupied by a spin-up electron or not. It is observed
that the diagonal terms with i = j vanish in order to cancel contributions to the
energy that would describe the interaction of an electron with itself.
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The one-electron operator in the Hamiltonian is taken in the crystal field ap-
proximation to arise from the electrostatic interaction of the ligand with the metal
d-electrons. The ligands are approximated as point charges with negative charge qi
at positions RLi and the metal is placed at the origin. This arrangement of ligands
leads to a charge distribution:

ρ(R) =
NL∑
i=1

qiδ(R − RLi ) (151)

where NL is the number of ligands and R is measured relative to the metal nucleus.
The potential from this charge distribution of the ligands at point r becomes:

VL F (r) =
∫

ρ(R)

|R − r|dR (152)

The inverse distance can be expanded as:

1
|R − r| =

∞∑
l=0

4π

2l + 1
rl
<

rl+1
>

l∑
m=−l

Slm(R)Slm(r) (153)

where r< is the smaller of R (≡ |R|) and r (≡ |r|) and r> the larger of the two
quantities. Slm is a real spherical harmonic. The expansion in complex spherical
harmonics is more common but since we work with real orbitals throughout, the
expansion in real spherical harmonics is more convenient. Since one can assume in
ligand field theory r< = r and r> = R one obtains the potential:

VL F (r) =
∞∑

l=0

rl
l∑

m=−l

Slm(r)Alm (154)

where:

Alm =
NL∑
i=1

4π

2l + 1
1

Rl+1
Li

Slm(RLi ) (155)

Thus, Alm can be immediately calculated once the charges and positions of the
ligands are known. The one-electron operator then becomes:

ĥ = − 1
2∇2 + VL F (r) (156)

The matrix elements of the ligand field potential are also easily evaluated over
atomic d-orbitals as:

〈di |VL F |d j 〉 =
∞∑

l=0

〈rl〉
l∑

m=−1

Alm G
mi m j m
li l j l

(157)

where G
mi m j m
li l j l

is a Gaunt coefficient that arises from the integral of three spherical
harmonics over the angular coordinates (li = l j = 2 for d-orbitals and mi and m j are
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the quantum numbers that distinguish the five real d-orbitals). It is readily evaluated
or can be looked up in tables. It is zero unless mi +m j = m and |li − l j | ≤ l ≤ li + l j .
Thus, the highest possible l in the case of d-orbitals is 4.

In the familiar case of an octahedral ligand field with six equivalent ligands around
the metal (Oh point group) the ligand field leads to a splitting of the five d-orbital
into a triply degenerate t2g and a doubly degenerate eg set. The energy difference is
defined as 10Dq which therefore parameterizes the ligand field seen by the central
metal ion. In ligand fields of lower symmetry further splittings arise as is clearly
explained in the standard works on ligand field theory [89, 90]. The central theme,
however, is that the ligand field potential leads to a splitting of the degeneracy of
the d-orbitals with the orbitals that have their lobes closer to the ligands being
higher in energy and those further away being lower in energy. The splittings are
parameterized by a small number of ligand field parameters such as 10D that are
fitted to spectral data.

The electron–electron repulsion is also easily treated in the strong crystal field
limit. All of the integrals are “pure” electron–electron repulsion integrals over metal
d-orbitals. These integrals are well known from atomic spectroscopy [59] and can
be expressed in terms of either Slater–Condon or Racah parameters. In terms of
Slater Condon parameters the relevant expressions for the Coulomb and Exchange
integrals are:

〈di di |r−1
12 |di di 〉 = F0

dd + 4
49 F2

dd + 36
441 F4

dd (158)

〈dσ dσ |r−1
12 |dπ dπ 〉 = 〈dσ dσ |r−1

12 |dπ ′dπ ′ 〉 = F0
dd + 2

49 F2
dd − 24

441 F4
dd (159)

〈dσ dσ |r−1
12 |dδdδ〉 = 〈dσ dσ |r−1

12 |dδ′dδ′ 〉 = F0
dd − 4

49 F2
dd + 6

441 F4
dd (160)

〈dπ dπ |r−1
12 |dπ ′dπ ′ 〉 = 〈dπ dπ |r−1

12 |dδdδ〉 = F0
dd − 2

49 F2
dd − 4

441 F4
dd (161)

〈dδdδ|r−1
12 |dδ′dδ′ 〉 = F0

dd + 4
49 F2

dd − 34
441 F4

dd (162)

〈dσ dπ |r−1
12 |dσ dπ 〉 = 〈dσ dπ ′ |r−1

12 |dσ dπ ′ 〉 = 1
49 F2

dd + 30
441 F4

dd (163)

〈dσ dδ|r−1
12 |dσ dδ〉 = 〈dσ dδ′ |r−1

12 |dσ dδ′ 〉 = 4
49 F2

dd + 15
441 F4

dd (164)

〈dπ dπ ′ |r−1
12 |dπ dπ ′ 〉 = 〈dπ dδ|r−1

12 |dπ dδ〉 = 〈dπ dδ′ |r−1
12 |dπ dδ′ 〉

= 〈dπ ′dδ|r−1
12 |dπ ′dδ〉 = 〈dπ ′dδ′ |r−1

12 |dπ ′dδ′ 〉
= 3

49 F2
dd + 20

441 F4
dd (165)

〈dδdδ′ |r−1
12 |dδdδ′ 〉 = 35

441 F4
dd (166)
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where the abbreviations dσ = dz2 , dπ,π ′ = dxz,yz and dδ,δ′ = dx2−y2,xy were used.
Note that the exchange integrals 〈di d j |r−1

12 |di d j 〉 (i �= j) do not carry the factor F0
dd

which is otherwise the largest term. It can be estimated from atomic spectroscopy as
I − A where I is the ionization energy and A the electron affinity of the atom or ion.
However, F0

dd enters in the same way into all Coulomb integrals. It will therefore
not appear in equations for energy differences and is therefore usually dropped.

The relation between the Slater–Condon and the more familiar Racah parameters
is:

A = F0
dd − 49

441 F0
dd (167)

B = 1
49 F2

dd − 5
441 F4

dd (168)

C = 35
441 F4

dd (169)

where A, B and C are the Racah parameters (A is not to be confused with the elec-
tron affinity mentioned above). In terms of Racah parameters the term energies
usually take a simpler form compared to Slater–Condon parameters. In practical
calculations A is again dropped and C � 4B is commonly assumed. Therefore the
electron–electron repulsion in ligand field theory is approximated by a single pa-
rameter B which is very convenient for the analysis of experimental data. The free
ion Racah parameters for the first transition series are collected in Table 1.

As expected for interelectronic repulsion, the Racah B parameter increases with
increasing effective nuclear charge, i. e. down the series and with the oxidation state
of the metal. In general, the effect of covalent bonding will be to reduce electron–
electron repulsion parameters from their atomic values. In practice this is usually
done by simply fitting the parameters to experimental observations. In the general
case, where there is orbital degeneracy, more complicated expressions result for
the ligand field energies. The details of the necessary procedures are well covered
for example in the classic texts by Griffith [90], Ballhausen [89] and more recently
also in a review article [91]. The simple relations derived here, however, serve to
illustrate the general principles.

Table 1. Racah parameters B for the atoms and ions of the first transition series in cm−1.

0 1+ 2+ 3+ 4+

Ti 560 680 720
V 580 660 765 860
Cr 790 710 830 1030 1040
Mn 720 870 960 1140
Fe 805 870 1060
Co 780 880 1120
Ni 1025 1040 1080
Cu 1220 1240
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In summary, the effects of the crystal field and the interelectronic repulsion are
incorporated in a small set of numerical parameters that can be fitted to experimen-
tal transition energies. This procedure is remarkably successful. On the other hand,
if the symmetry becomes low, the number of necessary parameters is increasing and
the fits tend to become overdetermined.

9.4.3 Matrix Elements over Molecular Orbitals

To derive expressions for the SH parameters it is necessary to evaluate matrix el-
ements of fairly complicated one-electron operators between MOs. In this section
we will introduce an approximate evaluation of these integrals in the framework
of ligand field theory. The first operator to be treated is the reduced SOC operator
with the matrix elements:

Li j
1µ

= Im

(〈
ψi

∣∣∣∣ ∑
A

ξ(rA)l A
µ

∣∣∣∣ψ j

〉)
(170)

In a normal complex the ligands are made of light atoms with small SOC con-
stants. It is therefore a good approximation to restrict the sum over atoms to the
metal only which gives:

Li j
1µ

≈ Im
(
〈ψi |ξ(rM )l M

µ |ψ j 〉
)

= Im
(
cMi cM j 〈di |ξ(rM )l M

µ |d j 〉 + cMi cL j 〈di |ξ(rM )l M
µ |L j 〉

+ cM j cLi 〈Li |ξ(rM )l M
µ |d j 〉 + cLi cL j 〈Li |ξ(rM )l M

µ |L j 〉
)

(171)

The first term is a one-center integral and the last three are at least two center
integrals. Since the operator ξ(rM ) has a r−3

M dependence it will be a good approx-
imation to neglect these multicenter integrals and end up with:

Li j
1µ

≈ cMi cM j Im
(〈di |ξ(rM )l M

µ |d j 〉
)

= cMi cM jζi j Im
(〈di |l M

µ |d j 〉
)

(172)

where:

ζi j = 〈di |ξ(rM )|d j 〉 (173)

is the radial integral over the operator ξ(rM ). (There are, of course, also situations
where ligands like sulfur, chlorine or even heavier atoms can make significant con-
tributions to the SOC integrals. It should be kept in mind, however, that the ligands
contribute only s- and p-orbitals which have one unit lower angular momentum than
d-orbitals which in addition to the smaller intrinsic SOC constants compared to the
metal leads to smaller SOC integrals.) The next approximation is to assume that all
metal d-orbitals have the same radial function. In this case the radial integration
becomes independent of i and j and one gets ζi j = ζ . ζ may be identified as the
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Table 2. Empirically determined SOC constants for first row transition metal ions in dN

electron configurations (in cm−1) (from Bendix et al. [92]).

2+ 3+ 4+ 5+ 6+

Sc 79
Ti 118 153
V 169 206 250
Cr 229 274 319 376
Mn 315 351 408 466 540
Fe 427 464 505 578 649
Co 533 619 656 700
Ni 668 749 858 888 863
Cu 829 911 1009 1139

one-electron SOC constant of the free atom or ion (ζ ). However, one has to ac-
count the possibility that the metal radial function changes upon complex formation
which leads to a differences between ζ and ζ (Section 9.4.1.4).

A comprehensive collection of ζ values for ions in dN configurations taken from
the paper by Bendix et al. [92] is given in Table 2. As expected, the SOC constants
increase with increasing effective nuclear charge and oxidation state of the metal
ion.

The one-center integrals of the angular momentum operator are easy to evaluate.
Their values are given in Table 3.

The factor cMi cM j is very important as it determines the effect of metal–ligand
covalent bonding on the SOC constants. It could be absorbed into the radial integral,
i. e. ζeff = ζcMi cM j which defines a covalently reduced SOC “constant” (cMi cM j ≤ 1)
which shows up as a result of the “dilution” of the metal orbitals with ligand orbitals.
However, this “dilution” will in general be anisotropic (cMi �= cM j ) which would
seem to preclude the use of a single SOC constant for the treatment of SOC in
inorganic complexes. However, in a number cases it will be an acceptable approxi-
mation to take an average (cM ) of the cMi over all metal d-derived MOs to define
an average covalently reduced SOC constant as ζ eff = c2

Mζ and to use this value in
all SOC matrix elements. It should however be noticed that the anisotropy in the
covalency is an important effect that is sensitively connected to the bonding in the
complex. In general the more strongly antibonding MOs at higher energy will have
larger covalencies (smaller cMi ) than the less antibonding or non-bonding orbitals
and this can have important effects on some properties such as zero-field splittings
(Sections 9.4.1.9.6, 9.5.2, and 9.6.5).

From Eq. (46) an appropriate form of the operator ξ(rM ) is:

ξ(rM ) = α2

2
Z M

eff

r3
M

(174)

This equation predicts that the one-electron SOC constant should be directly
proportional to the expectation value of r−3

M taken over the metal d-orbital radial
function. The proportionality constant should be proportional to the effective nu-
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Table 3. Values of the one center integrals 〈i |lµ| j〉 for real s-, p- and d-orbitals. Only non-zero
values are given.

lA,x s pz px py dz2 dxz dyz dx2−y2 dxy

s
pz i
px
py −i
dz2 i

√
3

dxz i
dyz −i

√
3 −i

dx2−y2 i
dxy −i

lA,y s pz px py dz2 dxz dyz dx2−y2 dxy

s
pz −i
px i
py

dz2 −i
√

3
dxz i

√
3 −i

dyz −i
dx2−y2 i
dxy i

lA,z s pz px py dz2 dxz dyz dx2−y2 dxy

s
pz
px −i
py i
dz2

dxz −i
dyz i
dx2−y2 −2i
dxy 2i

clear charge felt by the d-electrons. Figure 1 shows the correlation between empir-
ically determined SOC constants for a series of Fe ions in dN configurations [92]
with 〈r−3〉d values from accurate Hartree–Fock calculations [66]. From the slope
of the regression line one finds Z Fe

eff = 14.0 in reasonable agreement with Slater’s
rules [27, 77] that predict Z Fe

eff = 13.2. While the agreement is rather satisfactory
at this point one has to be careful because in inorganic complexes the metal ra-
dial functions can be distorted from the situation found in the free dN -ion and this
will give additional “central field” covalency effects on the SOC “constants”. This
subject will be further discussed in Section 9.6.5.

For some heavier ligands like sulfur, chlorine or bromine it will prove necessary
to include the ligand SOC in the treatment as it can become appreciable. In this case
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Fig. 1. Correlation between the empirically determined values of SOC constants ζ3d [92]
and 〈r−3

Fe 〉3d calculated from accurate Hartree–Fock wavefunctions [66].

one should include the ligand nuclei in the sum over nuclei. However, a one-center
approximation will still be appropriate. In place of Eq. (171) one finds:

Li j
1µ

≈ Im
(〈ψi |ξ(rM )l M

µ + ξ(rL)l L
µ |ψ j 〉

)
≈ Im

(
cMi cM j 〈di |ξ(rM )l M

µ |d j 〉 + cLi cL j 〈Li |ξ(rL)l L
µ |L j 〉

)
(175)

This equation can be expressed in terms of the metal SOC constant alone by
keeping Eq. (172) but redefining the effective SOC constant in Eq. (173) as:

ζi j → 〈di |ξ(rM )|d j 〉 + νL
cLi cL j

cMi cM j

〈Li |l L
µ |L j 〉

〈di |l M
µ |d j 〉 (176)

where νL can to a good approximation be taken to be the ratio of the atomic SOC
constants of the ligand and the metal [85].

Finally note the symmetry requirements for non-zero integrals. Although we have
chosen not to introduce spatial symmetry at the many electron level it can be easily
incorporated at the one electron level. The angular momentum operators transform
under the same irreducible representations as the molecular rotations. Thus it can
be readily decided whether �(ψi ) ⊗ �(Rµ) ⊗ �(ψ j ) contains the totally symmetric
representation in which case Li j

1µ
is non-zero (as is Li j

2µ
and Li j

3µ
).
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Closely related to the matrix elements of the SOC are the matrix elements of the
nucleus–orbit coupling, Eq. (145). Using the same approximation as for the SOC
one finds:

Li j
3µ

≈ cMi cM j 〈r−3〉d Im
(〈di |l M

µ |d j 〉
)

(177)

that is, these integrals differ only by the constant factor 1
2α2 Z M

eff from the SOC inte-
grals. They can therefore be either related to empirically determined SOC constants
or can be estimated by using free atom or ion values for 〈r−3〉d (vide infra; Table 6).
Of course, the same covalency effects as for the SOC “constants” arise.

The next operator to be discussed is the nucleus–electron spin dipolar coupling
that arise in Eq. (143). For the prediction of metal hyperfine coupling the operator
once more has a dependence r−3

M and therefore it will be sufficient to only keep the
one-center parts of the integrals to get:

〈ψi |r−5
M {δµνr2

M − 3rM,µrM,ν}|ψ j 〉
≈ cMi cM j 〈r−3〉d〈di |δµν − 3r−2

M rM,µrM,ν |d j 〉 (178)

The one-center reduced field gradient integrals are easy to evaluate. The operator
for the reduced field gradient integrals is denoted fµν and its matrix elements over
real s-, p- and d-orbitals are given in Table 4. For the ligand HFC likewise:

〈ψi |r−5
L {δµνr2

L − 3rL ,µrL ,ν}|ψ j 〉
≈ cLi cL j 〈r−3〉L〈Li |δµν − 3r−2

L rL ,µrL ,ν |L j 〉 (179)

The most critical integrals are the orbital Zeeman integrals (the L2 integrals,
Eq. (139)). Making the natural choice that the metal ion is placed at the origin the
integrals become:

Li j
2p = Im

(
cMi cM j 〈di |l M

p |d j 〉 + cMi cL j 〈di |l M
p |L j 〉

+cLi cM j 〈Li |l M
p |d j 〉 + cLi cL j 〈Li |l L

p − i(RL M × ∇)p|L J 〉) (180)

Where in the last term the general equation to shift an angular momentum op-
erator from one center to the other has been used:

lM = lL − iRL M × ∇ (181)

where RL M = RL − RM . Thus, a two center integral has been transformed to a
one-center integral at the expense of introducing an extra term that depends on
the gradient of the orbital in the ket with respect to the electronic coordinates. The
important point nevertheless is that the operator contains no factors of r−3 that
would justify a one-center approximation. The order of magnitude of the terms can
be most easily estimated by considering the third term in Eq. (180). The effect of
operating with the angular momentum operator on an d-orbital is another d-orbital
multiplied by a complex valued factor (Table 3). If this d-orbital overlaps with the
ligand orbital in the bra a contribution proportional to the metal–ligand overlap
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Table 4. The values of the one-center reduced field gradient integrals. In order to get the
field gradient themselves multiply with the matrix element of r−3 evaluated over the radial
parts of the orbitals involved.
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Table 4. (continued.)
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will arise. Even if all overlap integrals are neglected the fourth term will survive
and make a non-negligible contribution. We do not enter into a detailed calcula-
tion of the various contributions [85, 93–97]. The terms are fairly easily evaluated
numerically (vide infra). In anticipating a result from Section 9.6.7 it is noted that
the ligand contributions account for a reduction of the orbital Zeeman matrix ele-
ments by up to ≈20–25%. The reduction always arises for antibonding molecular
orbitals. Physically, this means that the ligand angular momentum in antibonding
MOs opposes the metal-angular momentum and thereby leads to a reduction of the
orbital Zeeman matrix elements. For the purposes of this section it is sufficient to
model the reduction in a rather global way by writing:

Li j
2p ≈ Im

(
cMi cM j 〈di |l M

p |d j 〉ε p
i j

)
(182)

where ε
p
i j maybe as low as 0.75–0.80 It should be noted, however, that in the crystal

field limit (cMi → 1 and cLi → 0) the ligand angular momentum corrections to the
orbital Zeeman vanishes exactly (ε p

i j → 1).
To further illustrate this important point, consider the data collected in Table 5

where the differences in the SOC and Zeeman matrix elements were derived from
a density functional calculation [98]. In ligand field theory the reduced SOC and
Zeeman matrix elements would be equal. However, it is seen from the table that
the SOC matrix element is much larger than the Zeeman matrix element. Thus, the
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Table 5. SOC versus Zeeman matrix elements for [Cu(NH3)4]2+ from Ref. [98]. The matrix
elements are the SOC and Zeeman matrix elements between the metal dx2−y2 and dxy based
MOs. The angular momentum matrix element between the pure dx2−y2 and dxy metal orbitals

is 2i. The SOC constant of Cu(II) from atomic spectroscopy is 829 cm−1. The calculations
were done with the B3LYP density functional method.

Calc.

ζCu (free Cu(II) ion) 821 cm−1∣∣∣∣∣
〈
ψx2−y2

∣∣∣∣ ∑
A

ζ(rA) �L A,Z

∣∣∣∣ψxy

〉∣∣∣∣∣
/

ζCu 1.619

Reduction from crystal field 19%∣∣∣∣
〈
ψx2−y2

∣∣∣∣�lz

∣∣∣∣ψxy

〉∣∣∣∣ 1.295

Reduction from crystal field 34%

εz
x2−y2,xy

0.799

SOC “constant” is reduced by 19% from its crystal field limit while the Zeeman
matrix element is reduced by as much as 34% because of the aforementioned effects
(i. e. εz

x2−y2,xy
≈ 0.80). Complete neglect of the ligand contributions to the Zeeman

matrix elements therefore leads to sizeable errors and consequently the results are
necessarily at most qualitatively correct.

9.4.4 “Central Field” versus “Symmetry Restricted” Covalency

In the preceding section we have discussed the main factors that need to be taken
into account in evaluating the relevant matrix elements of the various magnetic
operators in a ligand field framework. Most of the integrals can be satisfactorily
approximated as of the one-center type. By this procedure one can clearly observe
one consequence of covalent bonding – the dilution of metal d-orbitals with ligand
orbitals reduces all of the matrix elements from their atomic values. The crystal
field limit is obtained by letting cMi → 1 and cLi → 0 wherever they occur. This
type of covalency has been termed the “symmetry restricted covalency” because the
symmetry of the complex determines which metal orbitals can interact with ligand
orbitals in order to form covalent bonds. This covalency is manifestly anisotropic,
i. e. different metal d-orbitals can have grossly different admixtures of ligand orbitals
and, as will be elaborated below, this has interesting consequences on the spectro-
scopic properties of the complexes. The ligand admixtures will be the largest for
the orbitals that interact most strongly with the ligand and these are the most an-
tibonding orbitals that are highest in energy. Exceptions from this rule only occur
for exceptionally strong π -bonding effects.

There is, however, a second kind of covalency that is more subtle than the symme-
try restricted covalency that already shows up in the most primitive molecular orbital
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Fig. 2. Radial distribution functions of iron ions in dN configurations from accurate Hartree–
Fock calculations (reproduced with permission from Ref. [66]). The inset shows the variation
of the variation of the 〈r−3〉3d expectation value with the dN configuration.

calculations. This second kind of covalency is termed “central field covalency” and
shows up as a change of the radial expectation values from their atomic values. The
origin of this effect – which is to be separated from the simple dilution effect – is a
change of the radial distribution function of the metal ion upon being placed in the
ligand field. To illustrate the effect, Fig. 2 shows the radial distribution functions
of different iron ions in dN configurations as found from accurate Hartree–Fock
calculations. Evidently, the functions become more diffuse (i. e. extend to larger
distances from the nucleus) as the number of d-electrons is increased. This is due
to a decreased effective nuclear charge seen by the 3d electrons as more other 3d-
electrons tend to shield the nuclear charge. This change in metal-radial functions of
course also leads to a modification of the radial expectation values that are sensitive
to the shape of these functions. The inset in Fig. 2 shows that variation of the most
important 〈r−3〉3d value that decreases with increasing d-electron count because the
peak of the radial distribution function moves to larger distances with increasing
dN electron count. Since the HFC and the SOC are both directly proportional to
this value a ≈8–10% decrease of these values per one-electron increase is predicted
by this plot.

However, as we have discussed recently [66] following classic work of Ammeter
[97, 99], the pure nuclear shielding effect, that was anticipated early on [100–104] is
not the only effect that contributes to the central field covalency. Especially, the for-
mation of covalent bonds (i. e. bonding and antibonding molecular orbitals) leads to
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rather pronounced effects on the radial distribution function of the metal. In general,
the radial distribution function of the metal will become more diffuse in antibond-
ing orbitals which is a consequence of the virial theorem. Since the bonding and
antibonding character of the metal d-orbitals in a complex is evidently not isotropic,
this expansion of the radial function is also anisotropic. Thus, there not only is an
anisotropic “symmetry restricted covalency” but there also is an anisotropic “cen-
tral field covalency”. The anisotropic central field covalency is a significant effect
that account for up to ≈20% reduction of the 〈r−3〉3d value from its atomic value
and is therefore of the same order of magnitude as the symmetry restricted cova-
lency. If the “central field covalency” is not taken into account a significant overes-
timate of the “symmetry restricted covalency” may be the consequence. The effect
is illustrated in Fig. 3 for the case of FeCl−4 where we have plotted the molecular
radial distribution functions of the central ion in comparison to atomic radial dis-
tribution functions [66]. It is observed that the molecular radial functions do not
reflect the atomic radial functions of the 6S Fe3+ ion but are rather intermediate
between Fe(I) and Fe(II). Thus, the molecular radial distribution function is sig-
nificantly more diffuse than the expected atomic one. Moreover, the expansion of
the molecular radial function is anisotropic because the bonding characteristics of
the t2 and e orbitals are different. This has important consequences for the 〈r−3〉3d
expectation value that also becomes anisotropic and up to 20% smaller than the
one for the parent ion. Consequently, the same reduction is to be expected for the

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

Fe(I)-(4P/4F)

FeCl4
--6A1-t2

Fe(II)-5D

|R3
d

(r
)|2

r2

r  (bohr)

Fe(III)-6S

FeCl
4

--6A
1
-e

0 1 2 3 4
0

2

4

6

8

10

12
Fe(III)-6S

t
2

e

|R
3d

|2r2

     r3

Fig. 3. Molecular radial functions of the central iron in FeCl−4 in comparison with atomic
radial functions for several Fe ions of different dN configuration (reproduced with permission
from Ref. [66]).



9.4 Ligand Field and Covalency Effects on SH Parameters 395

SOC constant which underlines the importance of taking these effects into account
in a quantitative analysis of the magnetic resonance parameters in transition metal
complexes.

Having discussed the relevant matrix elements and the effects of covalency in a
general sense, we are now in a position to discuss the SH parameters of transition
metal complexes in a ligand field framework.

9.4.5 Ligand-field Theory of Zero-field Splittings

The ZFS contribution DSOC−(0) to the D-tensor follows from Eq. (130) using the
matrix elements Eq. (173) and (172) and neglecting the ligand contribution to the
SOC matrix elements (Eq. (176)):

DSOC−(0)
µν = − 1

4S2

∑
i

∑
j

�−1
i j ζ 2

i j c
2
Mi c

2
M j 〈di |l M

µ |d j 〉〈d j |l M
ν |di 〉 (183)

where i is either a doubly occupied orbital or an empty orbital and j is a singly
occupied orbital in the ground state. �i j is the transition energy for the promotion
of an electron from orbital i to j if i is double occupied and the transition energy
from j to i if i is empty in the ground state. In the approximation where the covalency
is averaged one finds:

DSOC−(0)
µν = − ζ

2
eff

4S2

∑
i

∑
j

�−1
i j 〈di |l M

µ |d j 〉〈d j |l M
ν |di 〉 (184)

According to Eq. (52) prefactor of Eq. (184) equals λ2, the square of the many
SOC constant. In this approximation the D-tensor becomes equivalent to the stan-
dard ligand field expression:

DL FT
µν = −λ2

∑
n

〈0|Lµ|n〉〈n|Lν |0〉
En − E0

(185)

where |0〉 is the ground state and |n〉 is an excited state that arises from the same
term as the ground state [3]. If |0〉 and |n〉 are approximated by single Slater determi-
nants built from pure metal d-orbitals Eq. (184) is recovered. Since a one-electron
approximation to the SOC is used it is clear that |n〉 must be singly excited relative
to |0〉 in order to make a non-zero contribution.

It is evident from this discussion that the ligand field treatment of ZFSs makes
two severe assumptions: (a) The covalency effects can be absorbed into a single,
unique, covalently reduced many electron SOC constant and (b) The contributions
of excited states of the same spin dominate the D-tensor. As will be explained in
detail below and illustrated with experimental data in Section 9.5, both assump-
tions are critical and will only provide reasonable approximations under certain
circumstances.
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9.4.6 Ligand-field Theory of the g-Tensor

The g-tensor in the ligand field approximation is derived exactly along the same
lines as the D-tensor. First of all the two small terms (Eqs. 134 and 137) can be
safely neglected for the g-tensors of transition metal complexes which generally
show rather large g-shifts on the order of 0.1 and more. Making use of Eqs. (172)
(or 176) and (182) in Eq. (138) one finds:

gµν = δµνge + 1
2S

∑
i

∑
j

�−1
i j c2

Mi c
2
M jζi j

{〈di |l M
µ |d j 〉εµ

i j 〈d j |l M
ν |di 〉

+〈di |l M
µ |d j 〉εν

j i 〈d j |l M
ν |di 〉

}
(186)

The phase factor pi j is zero if i is doubly occupied and unity if i is empty. If the
ligand terms are neglected and the covalency is averaged over the various molecular
orbitals this becomes:

gµν = δµνge + ζ eff

S

∑
i

∑
j

�−1
i j (−1)pi j 〈di |l M

µ |d j 〉〈d j |l M
ν |di 〉 (187)

which is equivalent to the standard ligand field expression [3, 4]:

gL FT
µν = δµνge − 2λ

∑
n

〈0|Lµ|n〉〈n|Lν |0〉
En − E0

(188)

where again, the summation n is over singly excited states that arise from the same
term as the ground state. If it is furthermore assumed that the index i sums only
over occupied or only over empty orbitals there is a close connection between the
D- and g-tensor which is:

Dµν = ±ζ eff

4S
�gµν (189)

where the upper sign holds for summations over doubly occupied orbitals and the
lower one for empty orbitals i . It should however be reiterated that several rather
severe assumptions, in addition to the simplification to a MO type picture, have been
made to arrive at this familiar result: (a) contributions to the D-tensor from states
of different spin than the ground state have been neglected, (b) the covalency was
averaged over all orbitals, (c) the ligand contribution to the SOC and much more
severely to the orbital Zeeman matrix elements has been neglected and (d) the
relevant excited states were restricted to either promotion from a doubly occupied
into a singly occupied MO or from a singly occupied MO into an empty MO but
not both types. The two different types of excited states enter with the same sign
into the D-tensor expression but with opposite signs into the g-tensor. These four
assumptions are so severe that quantitative accuracy at any level cannot be expected.
The relation between the D- and the g-tensor has, however, still been found to be
useful in certain circumstances.
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9.4.7 Ligand-field Theory of Hyperfine Couplings

9.4.7.1 Metal HFCs

The dipole contribution to the metal HFC is usually large being proportional to the
expectation value of r−3

M over the rather compact d-orbitals and the value P that
can be substantial for some metal nuclei (Table 6).

Inserting Eq. (178) into Eq. (143) one finds (remembering that in atomic units
βe = 1

2α):

A(A;d)
µν = 1

2S
Pd

∑
i

c2
Mi 〈di | fµν |di 〉 (190)

with

Pd = α

2
geβN g(A)

N 〈r−3
M 〉d (191)

where the sum over i includes the singly occupied MOs and the expectation value
〈r−3

M 〉d is to be understood as an appropriate average over the singly occupied MOs.
The second order contribution to the metal HFC is also usually large. Since in the
ligand field approximation the L1 and L3 integrals are proportional, an approxi-
mate relation between the second order HFC and the g-tensor can be established.
Inserting Eqs. (172) and (177) into Eq. (144) one obtains:

A(M;SO)
µν = 1

S
Pd

∑
i

∑
j

�−1
i j (−1)pi j c2

Mi c
2
M jζi j 〈di |l M

µ |d j 〉〈d j |l M
ν |di 〉 (192)

where all symbols have the same meaning as in Eq. (186). In fact comparing the two
equations and once more neglecting the ligand terms in the g-tensor one deduces
that:

A(M;SO1)
µν = Pd�gµν (193)

It should, however, be realized that the approximations for the second order part
of the HFC and the g-tensor are quite different – the neglect of ligand terms is a
good approximation in the case of the HFC but is a less accurate approximation
for the g-tensor (see also Section 9.3.5.4). Nevertheless, the relation between the
g-tensor and the second order metal HFC is a highly useful one.

For the second SOC contribution to the HFC one has (S = 1
2 case):

A(M;SO2)
µν = −Pd

∑
i

∑
j

�−1
i j (−1)pi j ζi j c

2
Mi c

2
M j

·
∑

κ,τ=x,y,z

iεκτµ〈d j | fκν |di 〉〈di |l M
τ |d j 〉 (194)

This term will also give contributions that are related to g-tensor elements al-
though the proportionality is not as direct as for A(M;SO1)

µν .
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The Fermi contact contribution to the metal nucleus HFC Eq. (142) is zero in the
ligand field approximation because d-orbitals have zero amplitude at the nucleus. In
reality, however, the Fermi contact interaction in inorganic complexes is non-zero
due to the presence of core-polarization (vide infra). The Fermi term is therefore
introduced as an empirical parameter into LFT and treated together with the dipole
term. Since the core polarization is usually negative the Fermi term is written:

A(M)
iso = − Pd

2S
κ (195)

where κ is an empirical parameter.

9.4.7.2 Ligand HFCs

Ligand HFCs do not arise in the crystal field approximation because the singly
occupied orbitals are all of purely metal character in this approximation. In fact,
observation of ligand HFCs were instrumental in proving experimentally that the
crystal field picture is incomplete [105]. In a ligand field framework, the ligand HFC
arises from the ligand character in the predominantly metal-based singly occupied
orbitals.

To be more specific consider the case where the ligand orbital is an sp hybrid of
the form:

|L〉 = n|p〉 +
√

1 − n2|s〉 (196)

where |p〉 is the valence shell p-orbital and |s〉 is the valence shell s-orbital of the
ligand. Let us also assume that the hybrid orbital is oriented along the metal–ligand
axis and that the coefficient multiplying |L〉 in the singly occupied MO is cL . Then
from Eq. (142) one estimates for the isotropic part of the ligand HFC:

A(L)
iso ≈ 4π

3S
P Lc2

L(1 − n2)|ψs(0)|2 (197)

This equation has frequently been used to estimate c2
L from an assumed value of

n and an atomic value of |ψs(0)|2 which is identified with the value of the amplitude
of the atomic valence s-orbital at the nucleus. The validity of this approach will be
discussed in Section 9.6.8.

For the dipolar part of the ligand HFC one finds from Eqs. (143) and (179) and
the values in Table 4:

A(L;d)
σ ≈ 4

5
1

2S
P L〈r−3

L 〉pc2
Ln2 (198)

A(L;d)
π ≈ −2

5
1

2S
P L〈r−3

L 〉pc2
Ln2 (199)

where A(L;d)
σ and A(L;d)

π are the values of the ligand HFC along and perpendicular
to the metal–ligand bond respectively.
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The SOC contribution to the ligand HFC can be estimated from Eqs. (144) and
(146). From the form of the ligand contribution, Eq. (196), and the fact that for
the ligand HFC the L3 and F integrals are measured relative to the ligand nucleus
it is clear that the contributions are on the order of n2c2

L PL〈r−3
L 〉pζ M/� where �

is some average excitation energy. In most cases ζ M/� is on the order of 0.1 or
smaller and this means that the second order contribution to the ligand HFC are
at least an order of magnitude smaller than the first order contributions and it is
customary to neglect them. Additional evidence for the validity this approximation
will be discussed in Section 9.6.8.

Thus, in most cases the ligand HFC will be dominated by the Fermi and dipolar
contributions and the ligand HFC tensor will consequently be traceless. This means
that the Fermi term can, for example, be measured from fluid solution spectra where
the dipolar term averages out, while measurement of the anisotropy requires high-
resolution data of frozen solutions or single crystals in order to obtain the desired
information.

Finally it is noted that ligands that are not directly coordinated to the metal ion
and do not carry significant spin density by themselves will also show small HFCs.
These are due to through space dipolar interactions and small residual Fermi contact
contributions. These contributions will be briefly discussed in Section 9.6.8 as they
form the basis of obtaining geometric information from techniques like ENDOR,
ESEEM or NMR.

9.4.8 Table of Hyperfine Parameters

For convenience, we have tabulated the gN , P , 〈r−3〉, P〈r−3〉 and |ψ(0)|2 values
that enter the estimation of HFCs in Table 6. (The calculations were performed
with the Hartree–Fock method for the average of the spatial multiplets that have
the same spin multiplicity as the ground state multiplet (SAHF method [106]. The
Ahlrichs triple-zeta basis set [107] was used for the calculations and is supposed to
give results that are reasonably close to the basis set limit (FN, unpublished results).)
As a convenient unit to quote the values of HFCs MHz (= 106 s−1) has been chosen.
The conversion to cm−1 is 1 cm−1 = 29 979.24 MHz and the conversion to eV is
1 eV = 2.418 044 6 × 108 MHz. Finally, 1 au = 6.579 668 50 × 109 MHz. It is evident
from the table that some of the metal nuclei have sizeable magnetic moments leading
to large HFCs on the order of more than 1000 MHz. However, variations of more
than two order of magnitudes are observed over the first transition series. This is
also partially due to a pronounced increase of the 〈r−3〉 values over the series which
indicates relatively poor shielding of the nuclear charge by the 3d-electrons. For
several nuclei more than one isotope is available that differ in their nuclear magnetic
moments. This feature can be profitably used to prove the origin of a given set of
resonance lines if samples are enriched with only one of the isotopes. As discussed at
length in Sections 4.1.3 and 4.1.4, the 〈r−3〉 values quoted in the table were derived
from atomic Hartree–Fock calculations and should be viewed as order of magnitude
estimates for several reasons: (a) they have been computed with an approximate
physical model, (b) they will vary with the effective nuclear charge (i. e. oxidation
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Table 6. Hyperfine parameters for a number of neutral main group atoms (in the ns2npx

configuration) and the metal atoms of the first transition series (in the 3dx−24s2 configura-
tion). For the ligand atoms the 〈r−3〉 expectation value over the outermost p-shell is given
while for the metals the values refers to the 3d shell.

Isotope I NA gN P ≡ gegN ββN 〈r−3〉 P〈r−3〉 ρα−β(0) 4π
3 Pρα−β(0)

(%)a (MHz au3)b (au−3) (MHz) (au−3)c (MHz)

1H 1
2 99.98 5.5857 533.552 – – 0.318 711.40

2H 1 0.8574 81.900 – – 0.318 109.09

6Li 1 0.8221 78.528 – – 0.170 55.92
7Li 3

2 2.1710 207.376 – – 0.170 147.67
9Be 3

2 –0.7850 –74.984 – – 0.570 –179.03
10B 3 19.8 0.6002 57.332 0.769 44.09 1.410 338.61
11B 3

2 80.2 1.7924 171.212 0.769 131.66 1.410 1011.21
13C 1

2 1.11 1.4048 134.188 1.678 225.17 2.770 1556.98
14N 1 99.63 0.4038 38.571 3.074 118.57 4.770 770.67
15N 1

2 0.37 –0.5664 –54.103 3.074 –166.31 4.770 –1081.01
17O 5

2 0.04 –0.7575 –72.357 4.737 –342.76 7.640 –2315.59
19F 1

2 100 5.2577 502.22 7.172 3601.93 11.410 24 003.15

22Na 3 <0.1 0.5820 55.933 – – 0.530 124.17
23Na 3

2 100 1.4784 141.218 – – 0.530 313.51
25Mg 5

2 10.0 –0.3422 –32.687 – – 1.210 –165.67
27Al 5

2 100 1.4566 139.136 1.092 151.94 2.360 1375.44
29Si 1

2 4.67 –1.1106 –106.086 2.074 220.02 3.810 –1693.06
31P 1

2 100.0 2.2632 216.183 3.638 786.48 5.630 5098.22
33S 3

2 0.75 0.4291 40.988 4.964 203.465 7.950 1364.94
35Cl 3

2 75.77 0.5479 52.336 6.792 355.47 10.640 2332.55
37Cl 3

2 24.23 0.4561 43.567 6.792 295.91 10.640 1941.73

39K 3
2 93.26 0.2610 24.931 – – 0.740 77.279

41K 3
2 6.73 0.1433 13.688 – – 0.740 42.43

43Ca 7
2 0.135 –0.3764 –35.954 – – 1.380 207.83

45Sc 7
2 100.0 1.3591 129.823 1.405 182.40

47Ti 5
2 7.4 –0.3154 –30.127 1.967 –59.26

49Ti 7
2 5.4 –0.3155 –30.137 1.967 –59.28

50V 6 0.25 0.5566 53.167 2.595 137.97
51V 7

2 99.75 1.4684 140.263 2.595 363.98
53Cr 3

2 9.50 –0.3147 –30.060 3.274 –98.418
55Mn 5

2 100 1.3819 132.001 4.097 540.81
57Fe 1

2 2.15 0.1806 17.251 5.522 95.26
59Co 7

2 100 1.218 116.344 5.841 679.57
61Ni 3

2 1.13 –0.5000 –47.760 6.884 328.78
63Cu 3

2 69.2 1.484 141.753 8.006 1134.88
65Cu 3

2 30.8 1.588 151.688 8.006 1214.41
67Zn 5

2 4.10 0.3503 33.461 9.323 311.96
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Table 6. (continued.)

Isotope I NA gN P ≡ gegN ββN 〈r−3〉 P〈r−3〉 ρα−β(0) 4π
3 Pρα−β(0)

(%)a (MHz au3)b (au−3) (MHz) (au−3)c (MHz)

69Ga 3
2 60.1 1.3444 128.418 2.807 360.47 6.920 3722.38

71Ga 3
2 39.9 1.7082 163.169 2.807 458.02 6.920 4729.69

73Ge 9
2 7.8 –0.1954 –18.665 4.692 –87.58 9.540 –745.87

75As 3
2 100 0.9596 91.662 7.238 633.45 12.430 4772.53

77Se 1
2 7.6 1.0693 102.141 9.629 983.51 15.720 6725.69

79Br 3
2 50.69 1.4043 134.140 12.407 1664.28 19.400 10900.56

81Br 3
2 49.31 1.5137 144.590 12.407 1793.93 19.400 11749.75

a NA = natural abundance
b geββN has been taken as 95.521 MHz au3.
c From the Hartree–Fock limit functions of Clementi and Rötti [302] as evaluated by Koh
and Miller [303].

state) of the atoms and (c) they are influenced by changes in the radial functions
of the orbitals that are involved in the bonding. Nevertheless, the parameters listed
in Table 6 are useful in order to estimate metal–ligand covalencies from magnetic
resonance parameters or to obtain insight into the bonding trends in a series of
related compounds.

For the transition metals no value of ρα−β is provided. The partially filled 3d-
orbitals have no spin density on their own at the nucleus. The observed HFC arises
from a combination of core-polarization and direct 4s-contributions and thus, the
tabulated values would be of little use.

9.4.9 Examples of Ligand-field Expressions
for Spin Hamiltonian Parameters

In this section we will apply the equations derived above to some standard cases.
The goal is not to derive the most general equations possible but instead to develop
the information content of the SH parameters of transition metal complexes. We
will use α1, β1, γ1, γ2 and δ1 for the MO coefficients of the dx2−y2 , dxy , dyz , dxz
and dz2 orbitals in the corresponding MOs respectively. The averaged metal SOC
constant is denoted as ζ M . According to our discussion of the central field covalency
in Section 9.4.1.4 it may be reduced by up to 10–20% from their atomic values
(Table 2).

9.4.9.1 d1 and d9 Configurations (S = 1/2)

The d9 configuration in a square planar ligand field belongs to the best studied ex-
amples of SH parameters. The most common cases are Cu(II) and Ni(I) complexes.
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In a square planar ligand field where the ligands are placed along the x- and y-axes
respectively, the highest MO among the metal-d-derived orbitals is dx2−y2 . From
group theory it is clear that the only contribution to the element gzz arises from the
transition dxy → dx2−y2 .

9.4.9.1.1 g-Values
Neglecting all ligand terms Eq. (186) becomes:

gzz ≈ ge + 2�−1
xy→x2−y2ζ Mα2

1β2
1 〈dxy |l M

z |dx2−y2〉〈dx2−y2 |l M
z |dxy〉

= ge + 8�−1
xy→x2−y2ζ Mα2

1β2
1 (200)

where use has been made of Table 3 and the positive sign arises because the dxy

based MO is doubly occupied in the ground state. �−1
xy→x2−y2 is the transition energy

for the promotion of an electron from the dxy based MO to the dx2−y2 based MO.
In the same way the contributions to the other diagonal elements of the g-tensor
are found to be:

gxx ≈ ge + 2�−1
yz→x2−y2ζ Mα2

1γ 2
1 (201)

gyy ≈ ge + 2�−1
xz→x2−y2ζ Mα2

1γ 2
1 (202)

9.4.9.1.2 Metal Hyperfine Couplings
The isotropic contribution is by definition (Eq. (195)):

A(M)
iso = −Pdκ (203)

For the dipolar contribution to the metal HFC one finds from Table 4 and
Eq. (191)

A(M;d)
zz = − 4

7 Pdα2
1 (204)

A(M;d)
xx = A(M;d)

yy = 2
7 Pdα2

1 (205)

For the first part of the second order contribution one has from Eq. (193):

A(M;SO1)
zz = Pd�gzz (206)

A(M;SO1)
xx = Pd�gxx (207)

A(M;SO1)
yy = Pd�gyy (208)

The second part of the second order contribution requires a little more work. Take
the A(M;SO2)

xx component and consider Eq. (194). The only cases for which the Levi–
Civitta symbol can be non-zero are κ, τ = z, y for which εzyx = −1 and κ, τ = y, z
for which εyzx = 1. Since the only singly occupied MO is ψx2−y2 we have to find the
functions in Table 4 that give a non-zero contribution with dx2−y2 for fxy or for fzx .
For fxy no contribution is found, but for fzx we have 〈dx2−y2 | fxz |dxz〉 = 3

7 . In addition
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we have from Table 3, 〈dx2−y2 |l M
y |dxz〉 = +i . Thus we obtain the contribution:

A(M−SO2)
xx = −Pd

ζ M

�xz→x2−y2
α2

1γ 2
2︸ ︷︷ ︸

c2
Mi c

2
M j

(−i)︸︷︷︸
iεzyx

3
7︸︷︷︸

〈dxz | fxz |dx2−y2 〉

+i︸︷︷︸
〈dx2−y2 |l M

y |dxz〉

= −Pd
3
7

α2
1γ 2

2 ζ M

�xz→x2−y2
(209)

= −Pd
3
14

�gyy

In the same way the other contributions are obtained. Putting the four contri-
butions to the metal HFC together, we have obtained the well known equations:

A(M)
zz ≈ Pd

[ − κ − 4
7α2

1 + �gzz + 3
14�gxx + 3

14�gyy
]

(210)

A(M)
xx ≈ Pd

[ − κ + 2
7α2

1 + �gxx − 3
14�gyy

]
(211)

A(M)
yy ≈ Pd

[ − κ + 2
7α2

1 + �gyy − 3
14�gxx

]
(212)

Together with the corresponding equations for the g-tensor and an educated guess
for the “quasi-atomic” values ζ M and Pd , they can be used to get rough estimates of
κ , α2

1, β2
1 , γ 2

1 and γ 2
2 . It is, however, necessary to have accurate optical data available

in order to estimate �xy→x2−y2 , �xz→x2−y2 and �yz→x2−y2 ; otherwise the number
of unknowns is larger then the number of known quantities (see Section 9.5.1). In
this form, these equations have found extremely widespread application. However,
they have also been criticized for being too simplistic [96, 97, 99, 108].

A mechanism for the reduction of the HFC in d9 complexes is the mixing of 4pz
character into the dx2−y2 based SOMO [109]. However, this mechanism has certainly
been overused [110] and in many cases the covalency contribution is more important
as in the case of blue copper centers in proteins (Section 9.5.1).

9.4.9.1.3 Ligand Hyperfine Couplings
The ligand HFC is approximated by the equations given in Section 9.4.1.7.2. A
further discussion is provided in Section 9.6.8.

9.4.9.1.4 Trigonal-bipyramidal Complexes
In this ligand field geometry the dz2 based orbital is highest in energy and singly
occupied. The following expressions are found for the g-values and metal HFCs.

gzz ≈ ge (213)

gxx ≈ ge + 6δ2
1γ 2

1 ζ M

�yz→z2
(214)

gyy ≈ ge + 6δ2
1γ 2

2 ζ M

�xz→z2
(215)



404 9 Interpretation and Calculation of Spin-Hamiltonian Parameters . . .

and:

A(M)
zz ≈ Pd

[ − κ + 4
7δ2

1 − 1
14�gxx − 1

14�gyy
]

(216)

A(M)
xx ≈ Pd

[ − κ − 2
7δ2

1 + �gxx + 1
14�gyy

]
(217)

A(M)
yy ≈ Pd

[ − κ − 2
7δ2

1 + �gyy + 1
14�gxx

]
(218)

9.4.9.1.5 d1 Complexes
The d1 case is very similar to the d9 case with VO2+ square pyramidal complexes
being typical members of this class. In this case, the dxy based MO is commonly
lowest in energy. The expressions found for the g-tensor are formally the same as
for the d9 configuration with the dx2−y2 based MO being singly occupied. However,
the signs of the g-shifts are reversed because now all relevant ligand field excitations
are from the singly occupied MO into empty MOs. Specifically, at the same level
of approximation as before:

gzz ≈ ge − 8�−1
xy→x2−y2ζ Mβ2

1α2
1 (219)

gxx ≈ ge − 2�−1
xy→yzζ Mβ2

1γ 2
1 (220)

gyy ≈ ge − 2�−1
xy→xzζ Mβ2

1γ 2
2 (221)

For the metal HFC one finds:

A(M)
zz ≈ Pd

[ − κ − 4
7β2

1 + �gzz + 3
14�gxx + 3

14�gyy
]

(222)

A(M)
xx ≈ Pd

[ − κ + 2
7β2

1 + �gxx − 3
14�gyy

]
(223)

A(M)
yy ≈ Pd

[ − κ + 2
7β2

1 + �gyy − 3
14�gxx

]
(224)

Note that despite the formal similarities, there are several differences compared
to the d9 case – (a) in the d9 case the most antibonding MO in the metal d-set
is singly occupied and the covalent reduction of the metal HFC is therefore quite
pronounced. In the case of the d1 system it is the least antibonding (i. e. non-bonding)
MO in the metal d-set that is singly occupied. Therefore the covalency effects are
much smaller here (β2

1 > α2
1), (b) the second order effects on A(M)

zz have the same
sign as the orbital dipolar contribution because the signs of the g-shifts are negative
and (c) as a consequence of the mainly non-bonding nature of the singly occupied
MO in the d1 systems the ligand HFCs will be very small.

9.4.9.1.6 Concluding Remarks
A number of refinements can be made to the ligand field treatment of the SH pa-
rameters for d9 systems. Perhaps the most important one is to include the ligand
terms for the orbital Zeeman term and, for complexes with coordinating sulfur or
chlorine ligands, to include the ligand SOC into the equations. These enhancements
have been thoroughly discussed in the literature [85, 96, 97, 99, 108] and we will
not repeat them here. Furthermore from Eq. (138) it is clear that the doubly occu-
pied ligand based orbitals will also make some contribution. These relevant excited
states are to be classified as ligand-to-metal charge (LMCT) transfer states. As will
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be further discussed in Section 9.5.1 they may make small but noticeable contribu-
tions especially for ligands like thiolates, that form highly covalent bonds and lead
to low lying LMCT transitions.

9.4.9.2 High-spin d8 (S = 1)

The most commonly met case is Ni(II) in an distorted octahedral field. In this case
the dx2−y2 and dz2 based MOs are singly occupied and highest in energy while dxy ,
dxz and dyz are lower in energy and doubly occupied. There are six one-electron
promotions from the three doubly filled t2g derived orbitals into the two half-filled
eg derived orbitals. From group theory in octahedral symmetry these give rise to a
3T1g and a 3T2g state of which only the 3T2g contributes to the g-shift as it is the only
state that spin–orbit couples with the 3 A2g ground state. Rather than directly using
Eq. (186) we should take the correct linear combinations of the single excitations
(compare the discussion in Section 9.3.5.1) to produce the three components of the
3T1g state which are:

|3T x
2g〉 = cos η|ψyz → ψx2−y2〉 + sin η|ψyz → ψz2〉 (225)

|3T y
2g〉 = cos η|ψxz → ψx2−y2〉 − sin η|ψxz → ψz2〉 (226)

|3T z
2g〉 = |ψxy → ψx2−y2〉 (227)

where η = π/3. |ψyz → ψx2−y2〉 is a Slater determinant where a spin-up electron in
ψyz has been replaced by a spin-up electron in ψx2−y2 . As discussed in Section 9.3.5.1
these linear combination of single excitations should be inserted into Eq. (89) to
get an equation closely resembling Eq. (138) except for the presence of the terms
that contain η. These equations are then simplified making the usual ligand field
approximations, using Table 3 and taking S = 1 to get (ligand terms neglected):

gzz ≈ ge + 4α2
1β2

1ζ M

�(3T z
2g)

(228)

gxx ≈ ge + 1
4

γ 2
1 ζ M (α1 + 3δ1)

2

�(3T x
2g)

(229)

gyy ≈ ge + 1
4

γ 2
2 ζ M (α1 + 3δ1)

2

�(3T y
2g)

(230)

where �(3T x,y,z
2g ) are the transition energies to the three components of the possibly

low-symmetry split 3T2g state. In the case that the covalency is isotropic all energy
denominators are equal and α1 = δ1 as well as β1 = γ1 = γ2. In this case the g-tensor
becomes isotropic with a g-value greater than ge. This is what is usually observed in
close to octahedral Ni(II) compounds. For a tetragonal distortion that lowers dxz,yz
in energy one would predict gxx,yy > gzz and vice versa for a tetragonal distortion
that increases dxz,yz in energy.
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At the same level of approximation one finds for the D and E values from the
excited states of the same spin:

D(3T2g) = ζ M

4
[gzz − 1

2 (gxx + gyy)] (231)

E(3T2g) = ζ M

8
[gxx − gyy] (232)

McGarvey reports reasonable agreement between theory and experiment with
this approximation [85].

9.4.9.3 d3 Configuration (High-spin; S = 3/2)

The most commonly met cases are Cr(III) and V(II) in distorted octahedral fields.
The calculation proceeds in a way that is quite similar to the case of high-spin d8 in
the previous section. In the distorted octahedral case the ground state has the dxy ,
dxz and dyz orbitals singly occupied which gives rise to a 4 A2g ground state. There
are again six one-electron promotions that give rise to a 4T1g and a 4T2g state that
are different in energy but only the 4T2g state spin–orbit couples with the ground
state. The three components of the 4T2g state may be taken as:

|4T x
2g〉 = cos η|ψyz → ψx2−y2〉 + sin η|ψyz → ψz2〉 (233)

|4T y
2g〉 = cos η|ψxz → ψx2−y2〉 − sin η|ψxz → ψz2〉 (234)

|4T z
2g〉 = |ψxy → ψx2−y2〉 (235)

and η = π/3. The g-tensor is found in the same way as in the d8 case. Here one
has to take into account that S = 3

2 and that all transitions are from half-filled into
empty orbitals. The result is:

gzz = ge − 8
3

α2
1β2

1ζ M

�(4T z
2g)

(236)

gxx = ge − 1
6

γ 2
1 ζ M (α1 + 3δ1)

2

�(4T x
2g)

(237)

gyy = ge − 1
6

γ 2
2 ζ M (α1 + 3δ1)

2

�(4T y
2g)

(238)

Again, for pure octahedral symmetry it is expected to find an isotropic g-tensor
but this time with a g-values that is smaller than ge. These expectations are in agree-
ment with experimental observations.

At the same level of approximation as for the d8 case the ZFS that results from
the 4T2g derived states is:
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D(4T2g) = −ζ M

6
[gzz − 1

2 (gxx + gyy)] (239)

E(4T2g) = −ζ M

12
[gxx − gyy] (240)

For d3 ions, however, there is an important contribution of spin doublet states
to the ZFS. From group theory the only states that can spin–orbit couple with the
ground state are states of 2T2g symmetry. The lowest 2T2g state arises from the t3

2g
configuration and its energy is thus largely independent of the ligand field strength.
To estimate the contribution from this term the 2T2g components are constructed
as:

|2T z
2g(t

3
2g)〉 = cos η|ψxz → ψ yz〉 + sin η|ψyz → ψ xz〉 (241)

|2T x
2g(t

3
2g)〉 = cos η|ψxy → ψ xz〉 + sin η|ψxz → ψ xy〉 (242)

|2T y
2g(t

3
2g)〉 = cos η|ψyz → ψ xy〉 + sin η|ψyz → ψ xy〉 (243)

(η = π/2). Insertion of the these states into Eq. (77) and making the usual ap-
proximation that ligand contributions are negligible one obtains:

D(2T2g(t
3
2g)) = −ζ

2
M

3

[
γ 2

1 γ 2
2

�(2T z
2g)

− 1
2

(
β2

1γ 2
2

�(2T x
2g)

+ γ 2
1 β2

1

�(2T y
2g)

)]
(244)

E(2T2g(t
3
2g)) = −ζ

2
M

6

[
β2

1γ 2
2

�(2T x
2g)

− γ 2
1 β2

1

�(2T y
2g)

]
(245)

The second 2T2g(t2
2ge1

g) will, of course, also contribute to the ZFS but we will not
enter a detailed calculation of this contribution here [111–113].

It is evident that for perfect octahedral symmetry the ZFS vanishes and it is a
combination of anisotropic covalency and low-symmetry distortions that make the
ZFS non-zero. Consequently, depending on the interplay between these two effects
the ZFS can be either positive or negative.

9.4.9.3.1 Hyperfine Couplings
For the t3

2g configuration the anisotropic HFC vanishes if the covalency is isotropic.

Thus the isotropic contribution A(M)
iso = − 1

3 Pdκ should be dominant and this is
what is commonly observed. In the case of anisotropic covalency one obtains from
Eq. (191) for the dipolar part:

A(M;d)
zz = 1

3 Pd
[ 2

7γ 2
1 + 2

7γ 2
2 − 4

7β2
1

]
(246)

A(M;d)
xx = 1

3 Pd
[ 2

7γ 2
2 − 4

7γ 2
1 + 2

7β2
1

]
(247)

A(M;d)
yy = 1

3 Pd
[ 2

7γ 2
1 − 4

7γ 2
2 + 2

7β2
1

]
(248)
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9.4.9.4 d7 Configuration (Low-spin; S = 1/2)

This case is realized for some complexes of Ni(III). We will consider a tetragonally
distorted complex with a weak ligand field along the z-axis. This leaves the dx2−y2

based MO empty and the dz2 based MO half-filled. The resulting expressions for
the magnetic parameters are given by Eqs. (213)–(218) because the dz2 → dx2−y2

transition does not contribute to the g- or A-values in this approximation.

9.4.9.5 d4 Configuration (High-spin; S = 2)

High-spin d4 is often encountered in compounds of Mn(III). We first consider a
distorted octahedral complex with a strong ligand field along the z-axis, which will
leave a hole in the dz2 orbital. From Eq. (186), taking S = 2 and using Table 3 one
gets for the three diagonal elements of the g-tensor (ligand terms neglected):

gzz = ge (249)

gxx ≈ ge − 3δ2
1γ 2

1 ζ M

�yz→z2
(250)

gyy ≈ ge − 3δ2
1γ 2

2 ζ M

�xz→z2
(251)

For the alternative case with a strong equatorial ligand field and a hole in the
dx2−y2 orbital, one obtains the analogous equations:

gzz ≈ ge − 2α2
1β2

1ζ M

�xy→x2−y2
(252)

gxx ≈ ge − 1
2

α2
1γ 2

1 ζ M

�yz→x2−y2
(253)

gyy ≈ ge − 1
2

α2
1γ 2

2 ζ M

�xz→x2−y2
(254)

Thus, in both cases g-values smaller than or equal to the free electron g-value are
expected which in agreement with observations for Mn(III) and Cr(II) complexes.
These complexes have 5T2g ground states in the octahedral limit and thus undergo
large Jahn–Teller distortions which will frequently leave a hole in the dx2−y2 based
MO.

At the same level of approximation, the contributions of d–d excited states with
S = 2 to the ZFS follows again from Eq. (189):

D ≈ −ζ M

8

[
gzz − 1

2 (gxx + gyy)
]

(255)

E ≈ −ζ M

16
[gxx − gyy] (256)

It is however, readily appreciated that triplet terms that arise from the octahedral
3T1g and 3T2g states are likely to make a significant contribution to the ZFS.
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9.4.9.6 d5 Configuration (High-spin; S = 5/2)

This is the important case which is met for example in Fe(III) and Mn(II). In the
case of high-spin d5 the metal d-based MOs are all half filled to produce the spin
state of S = 5

2 . There can be no ligand field excited state of the same multiplicity.
Consequently one expects no deviations of the g-values from the free electron value
and this is what is commonly observed. However, although one does also not expect
ligand field contributions from excited states of the same spin to the D-tensor, the
observed zero-field splittings are often on the order of a few wavenumbers. This
indicates that it is important to include the low-lying quartet states in the prediction
of ZFSs. We will purse an approximate calculation described in Ref. [66] (see also
Section 9.5.2).

9.4.9.6.1 Zero-field Splittings
Consider first a high spin d5 ion in a distorted tetrahedral ligand field. In such a
ligand field the orbitals are split into a lower energy e-set (dz2 , dx2−y2 ) and a higher-
energy t2 set (dxz, dyz, dxy) In this symmetry (Td point group) the ground state 6 A1
state can only spin–orbit couple to states of T1 symmetry. In a distorted tetrahedral
molecule the lowest 4T1 is dominated by the t → e excitations that are represented
by:

|4T a
1z〉 = |ψxy → ψ x2−y2〉 (257a)

|4T a
1x 〉 = cos η|ψyz → ψ x2−y2〉 + sin η|ψyz → ψ z2〉 (257b)

|4T a
1y〉 = cos η|ψxz → ψ x2−y2〉 − sin η|ψxz → ψ z2〉 (257c)

once more with η = π/3. Using these states in Eq. (77) together one finds for the
ZFS parameter D:

D(4T a
1 ) = ζ

2
M

20

[
4α2

1β2
1

�(4T a
1z)

− 1
8

(
γ 2

1 (α1γ1 + 3δ1)
2

�(4T a
1x )

+ γ 2
2 (α1 + 3δ1)

2

�(4T a
1y)

)]
(258)

where the �s in the denominator are the relevant transition energies. In perfectly
cubic environments symmetry demands that the energy denominators are equal and
also γ1 = γ2 = β1 and α1 = δ1, i. e. D(4T a

1 ) = 0. Non-zero contributions in lower
symmetries can be mainly traced back to two sources, namely distortions that lift
the degeneracy of the three quartet states and changes in covalencies of individual
MOs that reflect differences in bonding interactions.

Let us initially assume that all MO coefficients are equal to 1 and that the dis-
tortion splits the quartet states in a manner consistent with ligand field theory:

E(4T a
1z) = E (a)

0 + 1
2�e + 1

2�t2 (259a)

E(4T a
1x,y) = E (a)

0 − 1
4�e − 1

2�t2 (259b)

Here �e is positive if ψx2−y2 is above ψz2 , �t2 is positive if ψxz,yz are above ψxy

and E (a)
0 = E(4T a

1 )Td . Using the series (a+b)−1 = ∑
i (−1)i bi a−i−1 which converges

rapidly for b � a one arrives at a contribution to D from this mechanism that is
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given by:

D(4T a
1 )dist � −1

5

(
ζ M

E (a)
0

)2 [
�e + 3

4�t2 − 1
4�e�t2/E (a)

0

]
(260)

Thus, if �e is small this approximation, which is essentially the same as Griffith’s
[114], suggests that D should be positive if ψxz,yz is below ψxy (flattened tetrahedron)
and negative if ψxz,yz is above ψxy (compressed tetrahedron).

To see the effect of covalency one might assume δ1 = α1 and γ1 = γ2 = γ .
Equation (260) is then modified to:

D(4T a
1 )cov � 1

5
ζ

2
M

E (a)
0

α2
1

[
β2

1 (1 − 1
2 xe − 1

2 xt2 + 1
2 xext2)

−γ 2(1 + 1
2 xe + 1

4 xt2 + 1
4 xext2)

]
(261)

where xe = �e/E (a)
0 and xt2�t2/E (a)

0 . For the typical case of negative xt2 and small
xe one can also expect β2

1 < γ 2 and therefore in this case the effect of covalency
on the ZFS is negative while the distortion gives a positive contribution.

This situation changes for the higher lying 4T1 states. 4T c
1 is mainly composed

of the e → t excitations that give rise to states with analogous determinantal de-
scriptions. The only difference is that now �e and �t2 change sign because the one
electron energy is increased in the excited state. Therefore the contribution from
4T c

1 is:

D(4T c
1 )cov � 1

5
ζ

2
M

E (b)
0

α2
1

[
β2

1 (1 + 1
2 x ′

e + 1
2 x ′

t2 + 1
2 x ′

ex ′
t2)

−γ 2(1 − 1
2 x ′

e − 1
4 x ′

t2 + 1
4 x ′

ex ′
t2)

]
(262)

where x ′
e = �e/E (a)

0 and x ′
t2 = �t2/E (c)

0 . It is important to note that for 4T c
1 the

covalency and distortion contributions work in the same direction, i. e. for negative
x ′

t2 , small x ′
e and β2

1 < γ 2 the effects of both covalency and distortion are negative.
Thus, although 4T c

1 is typically >10 000 cm−1 higher in energy than 4T a
1 , it is likely

to make a significant contribution to the ZFS.
The third 4T1 state, 4T b

1 , is dominated by the spin flip transitions within the t2-set.
It does not split to first order with a geometric distortion but has a small contribution
to the ZFS arising from anisotropic covalency:

D(4T b
1 ) = 1

10
ζ

2
Mγ 2

[
γ 2

E(4T b
1z)

− β2
1

E(4T b
1x,y)

]
(263)

The case of octahedral sites is slightly more complicated because the anisotropic
covalency pattern will differ from the tetrahedral case. Here it may be assumed that
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γ1 = γ2 = β1 = γ . Instead of Eq. (261) the contribution from 4T a
1 is now given by:

D(4T a
1 ) = 3

80
ζ

2
M

E0
γ 2[(α1 − δ1)(5α1 + 3δ1) + α2

1( 17
6 xt2g + 11

4 xeg + 31
12 xt2g xeg )

+δ2
1( 3

2 xt2g + 3
4 xeg − 3

4 xt2g xeg ) + α1δ1(xt2g + 1
2 xeg − 1

2 xt2g xeg )
]
(264)

Again, for the typical case of small xt2g , positive xeg and α2
1 < δ2

1 one has a negative
contribution to the D-value from anisotropic covalency and a positive from the low
symmetry distortion. The contribution from 4T c

1 is given by the same equation with
the signs of xt2g and xeg reversed.

In addition to the contributions described here there will be additional contri-
butions that arise from the 6� charge-transfer excited state that are not present in
a ligand field treatment but that nevertheless give important contributions that will
be described in Section 9.5.2.

9.4.9.6.2 g-Values
For the high-spin d5 configuration there are no ligand field excited states of the same
total spin as the ground state. Consequently in this approximation the deviations of
the g-values from the value of the free-electron are negligible. If there are ligands
present that give rise to low lying charge transfer state small deviations from the
free-electron g-value may arise.

9.4.9.6.3 Hyperfine Couplings
For the metal HFC are rather similar situation exists. If the covalency is isotropic it
is readily appreciated from Table 4 and Eq. (191) that the dipolar part of the metal
HFC equals zero. Likewise the SOC contribution to the metal HFC is zero because
the deviations of the g-values from the free-electron g-value are zero. Therefore
one is left with the isotropic part that is given A(M)

iso = − 1
5 Pdκ . If the covalency is

not isotropic one will have small dipolar contributions to the metal HFC that are
given by:

A(M;d)
zz = 1

35
Pd

∑
i

4δ2
1 + 2γ 2

1 + 2γ 2
2 − 4α2

1 − 4β2
1 (265)

A(M;d)
xx = 1

35
Pd

∑
i

−2δ2
1 + 2γ 2

2 − 4γ 2
1 + 2α2

1 + 2β2
1 (266)

A(M;d)
yy = 1

35
Pd

∑
i

−2δ2
1 − 4γ 2

2 + 2γ 2
1 + 2α2

1 + 2β2
1 (267)

9.4.9.7 d5 Configuration (Low-spin; S = 1/2)

The low-spin d5 configuration with S = 1
2 has received much attention because it

occurs very frequently in Fe(III) porphyrins and many other complexes of Fe(III)
or Ru(III). The theory is not quite standard because in an octahedral ligand field the
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ground term is 2T2g which is orbitally triply degenerate. The corresponding elec-
tronic configuration is t5

2g which has altogether five electrons in the dxy , dxz and
dyz based MOs. In the case of (near) orbital degeneracy the standard perturbation
theory is not valid and special techniques have to be used.

We will first look at the situation of a significantly distorted octahedron, where the
low-symmetry splittings are so large that they become significantly larger than the
one-electron SOC constant of the metal which is ≈400 cm−1 in the case of Fe(III)
after making a reasonable covalent reduction. This situation is met in a number of
low symmetry environments such as present in heme or certain non-heme enzyme
active sites [115]. The general features of the g-tensor of such sites can, in fact, be
understood from perturbation theory. Initially only the three components of the
2T2g ground state are taken into account. If the situation is such that the distortion
leaves the dyz orbital singly occupied the expressions for the g-tensor from Eq. (186)
become:

�gzz(
2T2g) ≈ 2ζ Mγ 2

1 γ 2
2

�xz→yz
(268)

�gxx (
2T2g) ≈ 2ζ Mγ 2

1 β2
1

�xy→yz
(269)

�gyy(
2T2g) ≈ 0 (270)

In the alternative case of the dxy-based MO being singly occupied in the ground
state one finds:

�gzz(
2T2g) ≈ 0 (271)

�gxx (
2T2g) ≈ 2ζ Mβ2

1γ 2
2

�xz→xy
(272)

�gyy(
2T2g) ≈ 2ζ Mβ2

1γ 2
1

�yz→xy
(273)

and thus, it differs mainly by the orientation of the g-tensor in the molecular frame.
In this approximation there are two g-values larger than the free electron g-value
and one g-value equal to it. This is not what is actually observed because there
will usually be one g-value that is significantly smaller than the free electron g-
value. This is, in part, due to higher order terms that become important when the
energy denominators become small [84, 116]. However, the second reason for gmin
values smaller than ge are the t2g → eg excitations. These excitations may occur
at energies between 15 000 and 30 000 cm−1 and are thus low enough in energy
to make significant contributions to the g-shift. As explained in detail elsewhere,
there is a rather large number of many electron states that arise from the t2g → eg
excitations [116]. In an order-of-magnitude treatment one may, however, look at
the one-electron excitations only. Since the excitations are from the singly occupied
MO into an empty MO, the contributions to the g-shift are negative and are given
by:
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�gxx (
2 Eg) ≈ −2ζ Mγ 2

1 α2
1

�yz→xy
− 6ζ Mγ 2

1 δ2
1

�yz→z2
(274)

when the dyz based MO is singly occupied in the ground state and:

�gzz(
2 Eg) ≈ − 8ζ Mβ2

1α2
1

�xy→x2−y2
(275)

when the dxy based MO is singly occupied in the ground state.
In the case that the perturbation expressions diverge or are too inaccurate, one

has to first remove the degeneracies by diagonalizing the matrix of the SOC operator
in the basis of the low-symmetry 2T2g components. In a second step the resulting
states may be perturbed to second order by the higher d–d excitations and finally, in
a third step the g-tensor is obtained by using the Zeeman operator in the basis of the
lowest Kramers doublet found from the diagonalization. The procedure is rather
straightforward although the second step is omitted in almost all treatments. The
crystal field equations have first been worked out by Griffith [90, 117]. His model has
then undergone some minor modifications [118–122] with the most commonly used
one being due to Taylor [121]. We will briefly describe the Griffith–Taylor model.

Consider a situation where the one-electron SOC constant is averaged for the
three t2g derived MOs. The main effects of SOC are obtained by diagonalizing the
BO plus SOC Hamiltonian in the basis of the six components of the low symmetry
split 2T2g term. The component where the dxy derived MO is singly occupied with
a spin-up electron is written:

|2T2g; xy〉 = |ψxzψ xzψyzψ yzψxy | (276)

and corresponding notations for the other five states. The matrix of the BO plus
SOC Hamiltonian is then found to be factored into two identical 3 × 3 submatrices
(as required from time reversal symmetry) which read:

|2T2g; yz〉 |2T2g; xz〉 |2T2g; xy〉
〈2T2g; yz|
〈2T2g; xz|
〈2T2g; xy|


 0 − i

2ζ eff
1
2ζ eff

i
2ζ eff −A − i

2ζ eff
1
2ζ eff

i
2ζ eff −B


 (277)

Where the diagonal elements contain ligand field parameters that describe the
low-symmetry splitting of the three spatial components.

A = V (278)

B = � + 1
2 V (279)

where � describes a tetragonal splitting and V a rhombic ligand field splitting. Di-
agonalization of the Hamiltonian matrix yields three pairs of degenerate states
(Kramers doublets). The lowest Kramers doublet in Taylors notation is written
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as:

|+〉 = a|2T2g; yz〉 − ib|2T2g; xz〉 − c|2T2g; xy〉 (280)

|−〉 = −a|2T2g; yz〉 − ib|2T2g; xz〉 − c|2T2g; xy〉 (281)

where a, b and c are the components of the lowest eigenvector and the signs and
phases have been chosen by Taylor for convenience. Application of the Zeeman
operator within this Kramers doublet, which amounts to first order perturbation
theory, and comparison to the matrix of the SH then yields the g-values as [121]:

gzz = 2[(a + b)2 − c2] (282)

gxx = 2[a2 − (b + c)2] (283)

gyy = 2[(a + c)2 − b2] (284)

A useful feature of the model is that the ligand field parameters can be extracted
from the measured g-values in units of the SOC constant as [121]:

A

ζ eff
= gxx

gyy + gzz
+ gyy

gzz − gxx
(285)

B

ζ eff
= gxx

gzz + gyy
+ gzz

gyy − gxx
(286)

In this form the model has been found extremely widespread application and
many empirical relationships are known [122, 123] that relate the ligand field pa-
rameters to specific ligation patterns. A useful prediction of the model is that
g2

xx +g2
yy +g2

zz ≤ 16 [90] and this has sometimes been used to estimate a lower limit
for the gmin value which is helpful for quantification purposes [124]. A drawback
of the model is that it leaves the signs of the g-values in doubt and this has led to
much discussion in the literature about the correct assignment of magnetic axes for
low-spin d5 systems (a discussion is available elsewhere [125]).

9.5 Case Studies of SH Parameters

From the ligand field expressions given in Section 9.4.1.8, the spin Hamiltonian
parameters are underdetermined depending on both the energies of excited states
and on the covalencies of the different d orbitals. Electronic spectroscopy (polarized
single crystal absorption, magnetic circular dichroism (MCD), and X-ray absorption
(XAS) combined with their selection rules) allows the relevant excited states to be
assigned and their energies determined from experiment. Thus a combination of
ground and excited state data gives a direct probe of the covalency of the valence
orbitals allowing experimental evaluations of electronic structure calculations and
insight into physical properties and reactivity. S = 1/2 (g and A values) and S = 5/2
(zero field splitting) examples are developed below.
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9.5.1 CuCl2−
4 and the Blue Active Site: g and AM Values

9.5.1.1 g Values

Square planar cupric chloride is one of the most well studied molecules in physical-
inorganic chemistry [126]. It has been spectroscopically studied over ten orders of
magnitude in photon energy and treated by the complete range of electronic struc-
ture methods. Its g values are g‖ = 2.220, g⊥ = 2.041. From the ligand field ex-
pressions (Eqs. 200–202) these are dependent on the energies of the ligand field
transitions to the dxy → dx2−y2 and dxz , dyz → dx2−y2 excited states, respectively,
and the covalencies of the different d orbitals in the CuCl2−

4 environment (α2
1 for

dx2−y2 , β2
1 for γ 2

1 , γ 2
2 for dxz , dyz). The relevant ligand field excited state energies can

be obtained from polarized single crystal electronic absorption spectroscopy. From
Fig. 4, the band at 12 500 cm−1 is forbidden in z polarization. Vibronic selection
rules for a square planar system show that this must be the dxy → dx2−y2 transition
[126–128] which gives the energy denominator in Eq. (200). The transition centered
at ∼14 200 cm−1 is split in x and y polarizations. This must be a transition to the
doubly degenerate excited state, dxz,yz → dx2−y2 , that splits in energy due to the low
site symmetry of the cupric chloride complex in the crystal lattice. These transitions
give the energy denominators in Eqs. (201) and (202).

Using these experimental energy denominators and assuming pure d orbitals, the
ligand field expressions give the calculated g values in the second column of Table 7.

These deviate too much from the spin angular momentum value of 2.0023 rel-
ative to experiment indicating that there is too much orbital angular momentum
in the ground state. Covalency decreases this by delocalizing the metal d electron
density onto p hybrid orbitals of the ligands. This corresponds to α2

1, β2
1 , γ 2

1 , γ 2
2 < 1

in Eqs. (200)–(202). Since there are still four unknowns required for three experi-
mental g values, these are best estimated from molecular orbital theory and used to
evaluate the calculations. This was addressed in the mid eighties using the simplest
density functional method, Xα-scattered wave developed by Slater and Johnson

z2

xz,yz
xy x2-y2

Fig. 4. Polarized absorption spectra of the ligand field region for a single crystal of D4h-
CuCl2−

4 at 10 K.
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Table 7. Experimental and calculated g-values of D−
4h CuCl2−

4 .

Exp LFT Xα-SW Xα Adjusted

g‖ 2.220 2.531 2.144 2.220
g⊥ 2.041 2.117 2.034 2.041

[129, 130]. From the third column in Table 7, the g values calculated (using more
complete expressions than Eqs. (200)–(202) which include ligand orbital angular
momentum, ligand centered spin–orbit coupling, and charge transfer contributions
to the g values) were reduced relative to the ligand field calculated values due to
covalency. However, they are closer to 2.0023 than the experimental values indicat-
ing that these calculations give too covalent a description of the ground state. There
is a set of parameters in these calculations, the sphere sizes used in the scattered
wave solutions, which could then be adjusted until there was agreement between
the calculated and experimental g values. This then gives an experimentally cal-
ibrated description of the ground state of D4h-CuCl2−

4 , Fig. 5A, which has 61%
copper dx2−y2 character in the SOMO with the rest of the wave function equiva-
lently distributed over the 3p orbitals of the four chloride ligands that are involved
in σ -antibonding interactions with the metal [131]. This description is supported by
a wide range of experiments and has been recently used to evaluate and improve
modern DFT methods [132].

The blue copper active site, which has a Cu(II) in a distorted tetrahedral geometry
with a short thiolate ligand, has played a central role in bioinorganic chemistry
due to its unique spectroscopic features (vide infra). It is involved in long-range
electron transfer (ET) and its unique spectroscopic features reflect a novel electronic
structure that activates the ground state for rapid directional ET [133–138]. The
experimental g values of the blue copper site in plastocyanin are given in Table 8
[139,140].

The unique absorption features of the blue copper site (intense absorption band
at ∼600 nm in Fig. 6A) make assignment of the ligand field transitions inaccessible

A B

Fig. 5. Contour plots of ground state wavefunctions generated from SCF-Xα-SW calculations
of A) CuCl2−

4 and B) plastocyanin, the latter showing significantly more covalency involving
the Cys-thiolate sulfur.
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Table 8. g-Value analysis for the blue copper active site.

Exp LFT Xα-SW Xα Adjusted

g‖ 2.226 2.615 2.159 2.226
g⊥ 2.053 2.124 2.056 2.067

using only polarized crystal absorption methods. However, low temperature MCD
spectroscopy allowed assignment of the ligand field excited states [141].

From Fig. 6B, bands 5–8 in the low temperature MCD spectrum are intense,
while they are weak in absorption. Low temperature MCD intensity involves a C-
term mechanism requiring two perpendicular transition moments [142, 143]. Since
in a low symmetry protein active site environment all states are non-degenerate,
all transitions to excited states must be unidirectional. Thus C-term MCD intensity
requires SOC between these excited states which have different polarization direc-
tions. Since the SOC constant for Cu(II) (ζ ∼ 830 cm−1) is much larger than for the
ligands (ζ (O, N) ∼ 70 cm−1, ζ (S) ∼ 325 cm−1) the C-term intensity is dominated
by d character in the excited states. Therefore d → d transitions are intense in the
low temperature MCD relative to absorption spectrum (i. e. high C/D ratios). From
the signs and magnitudes of the C/D ratios, the excited states can be assigned as
indicated in Fig. 6. This gives the dxy → dx2−y2 excited state at 10 800 cm−1 and
the average energy of the dxz,yz → dx2−y2 transitions at 13 375 cm−1. Using these in
Eqs. (200)–(202) gives the non-covalent ligand field calculated g values in the sec-
ond column of Table 8 which again are too large relative to experiment. Allowing
for covalency using Xα-scattered wave DFT and adjusting the calculations to fit the
experimental g values as described above, gives the ground state description of the
blue copper site in Fig. 5B. This is very covalent with only 42% Cu dx2−y2 charac-
ter in the SOMO and the covalency is highly anisotropic with 36% delocalization

A

B
Fig. 6. Low temperature absorption (upper)
and low temperature MCD (lower) spectra
of plastocyanin with transition assignments.
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into the sulfur 3p π orbital of the thiolate ligand. This activates protein pathways
involving this ligand for rapid directional long-range electron transfer.

9.5.1.2 AM Values

The AM values of square planar CuCl2−
4 are A‖ = −164 × 10−4 cm−1 and A⊥ =

−35×10−4 cm−1. Note that while only their magnitude is obtained from a standard
powder pattern EPR spectrum, their sign can be determined from off-axis single
crystal and circularly polarized EPR data [144]. The ligand field expressions for
these AM values are given by Eqs. (210)–(212). Inserting the experimental g values
(vide supra), κ (Cu(II)) = 0.43, Pd (Cu(II)) = 400×10−4 cm−1 and initially assuming
the ionic limit (α2

1 = 1) gives individual ligand field contributions to the AM values
listed in the top two rows of Table 9.

These sum to give too large a magnitude for the hyperfine coupling of the electron
spin to the nuclear spin of the copper. Covalency reduces this coupling by delocal-
izing the electron spin onto the four chloride ligands. Using the ground state wave
function from the Xα-scattered wave calculations adjusted to the g values to de-
scribe this covalency, Fig. 5A, gives the individual contributions to the AM values
listed in the bottom two rows of Table 9. Covalency reduces the spin dipolar term
since α2

1 in Eqs. (210)–(212) is 0.61. While the experimental g values have covalency
effects included, they must be modified as the ligand orbital angular momentum con-
tributes to these g values but not the A values since the latter are more localized on
the copper (Section 9.4). κ is also reduced by covalency; while in some treatments
this term is included as κα1 [2], the dependence on covalency is more complex, not
easily calculated by DFT and best obtained from a fit to experimental EPR data
[145]. Table 9 bottom gives the best available estimates for the individual contri-
butions to AM ; all are of similar magnitude, Fermi contact and spin dipolar both
have negative contributions to A‖, and the orbital dipolar term is of opposite sign.

As shown in Fig. 7, upon going from D4h-CuCl2−
4 to the blue copper active site

the A‖ value greatly decreases.
This was originally attributed to Cu 4pz mixing into the dx2−y2 orbital due to

the distorted tetrahedral site symmetry [110]. The idea as sketched in Fig. 8 is that
the spin dipolar interaction of the electron with the nuclear spin on the copper
averaged over the Cu pz orbital is of opposite sign and would reduce the spin dipolar
interaction of the electron averaged over the dx2−y2 orbital with the copper nucleus
[109].

Table 9. AM Values of D−
4h CuCl2−

4 (× 10−4 cm−1).

Aiso Adip ASO Total Exp

LFT A‖ −172 −229 +95 −306 −164
A⊥ −172 +114 +13 −4 −35

Xα A‖ −123 −155 +114 −164 −164
Adjusted A⊥ −123 +78 +17 −28 −35
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Fig. 7. EPR spectra of normal copper, CuCl2−
4 (up-

per) and the blue (Type I) copper center in plas-
tocyanin (lower) which shows the characteristic ex-
tremely small parallel hyperfine splitting.

Fig. 8. Spin dipolar contribution to the parallel hyperfine
coupling of the nuclear spin on the copper to an electron
in a 4pz relative to one in a 3dx2−y2 orbital.

This could be evaluated by polarized single crystal X-ray absorption spectroscopy
at the Cu K-edge [146]. This involves the 1s → 3d transition at 8979 eV which is
only quadrupole allowed but gains electric dipole absorption intensity through Cu
4p mixing into the dx2−y2 orbital due to the distorted tetrahedral site symmetry.
From Fig. 9 this behavior clearly is observed in the orientation averaged edges, as
the intensity at 8979 eV is much larger for blue copper relative to square planar
CuCl2−

4 which has a center of inversion and thus no Cu 4p mixing. The nature of
the 4p mixing could be determined from single crystal XAS. Polarized absorption
data taken along the molecular z axis (determined by single crystal EPR) shows no
8979 eV intensity indicating no 4pz mixing, while all the 8979 eV intensity is observed
when the crystal is oriented such that the E vector of light is in the x,y plane. Thus
Cu 4px,y mixes with the dx2−y2 orbital and this would increase not decrease A‖ [146].

Thus polarized single crystal XAS data experimentally evaluated this generally
accepted model for small parallel hyperfine in distorted copper complexes [146].
Elimination of this model allowed us to focus on the alternative explanation of the
highly covalent site reducing the electron spin coupling to the Cu nuclear spin by
delocalization onto the ligands. Using the ground state wave function from Xα-
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A B C

Fig. 9. XAS determination of 4p mixing into 3d orbital with Cu pre-K edge at 8979 eV.
A) Energy level diagram for the Cu pre-edge. B) Orientation averaged XAS spectra of
D4h-CuCl2−

4 and the blue copper site in plastocyanin. C) Polarized single crystal XAS edge
spectra of the blue copper site in plastocyanin.

scattered wave calculations adjusted to the g values in Fig. 5B gives the individual
contributions to the hyperfine coupling of the blue copper site listed in Table 10.
Both the Fermi contact and spin dipolar terms are greatly reduced relative to square
planar CuCl2−

4 in Table 9 by the highly covalent nature of the blue copper active site
ground state wavefunction. The functional significance of this covalency is described
above.

Table 10. AM Values of the blue copper active (×10−4 cm−1).

Aiso Adip ASO Total Exp

A‖ −79 −90 +106 −65 |63|
A⊥ −79 +45 +18 −15 < |17|

9.5.2 FeCl−4 and the Fe(SR)−
4 Active Site: Zero-field Splitting (ZFS)

From ligand field theory, to a first approximation the ZFS of the 6 A1 ground state
of high spin d5 complexes derives from second order spin–orbit coupling with a
low lying 4T a

1 state which is split in energy due to the axial distortion of the ligand
environment around the iron (Section 9.4.1.9.6). This is often referred to as the
Griffith model and is described by Eq. (287) which derives from Eq. (258) setting
the coefficients of the orbitals to 1.0 for the ionic limit.
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Fig. 10. Polarized single crystal absorption and MCD spectra of [FeCl4][PPh4].

D = ζ 2

5

[
1

�(4T a
1z)

− 1
�(4T a

1x,y)

]
(287)

To test this model experimentally, the energies of the 4T a
1 axial components are

needed. This has been accomplished for the D2d -FeCl−4 and S4-Fe(SR)−
4 complexes

using polarized single crystal electronic absorption and magnetic circular dichroism
spectroscopies [147, 148]. For D2d -FeCl−4 in Fig. 10, the energies of 4T a

1z and 4T a
1x,y

are 12 890 and 14 240 cm−1 respectively.
The energy order is as predicted by Eq. (258) with the dxy above the dxz , dyz which

is appropriate for a flattened tetrahedral structure with the chlorides moved into
the xy plane by 5.1◦. Using these energies in Eq. (287) with ζFe(III) = 430 cm−1,
gives D(calc) = +0.27 cm−1. The experimentally observed value for the ground
state zero field splitting is D(exp) = −0.04 cm−1 [147, 148]. Thus even the sign is
wrong, demonstrating that differential orbital covalency, that is β2

1 �= γ 2
1 , etc. in

Eq. (258), plays a key role in determining the ZFS. This is again under-determined
as one parameter, D, depends on a number of orbital coefficients in addition to the
energies of the axial split excited state and is best obtained from molecular orbital
calculations. On a qualitative level when the dxy orbital energy is increased due to
the flattened D2d axial distortion splitting the 4T a

1 state, its covalency also increases
due to the increased antibonding interactions with the ligands. Thus β2

1 < γ 2
1 , γ 2

2
and from Eq. (258) this will have the opposite effect on D relative to the energy
splitting of the 4T a

1 state. Quantitatively, these opposing effects reduce the impact
of the lowest energy 4T a

1 state on the ZFS and higher energy quartet ligand field
exited states become more important. Also covalency leads to additional contribu-
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Table 11. Contributions of excited states to the ZFS in FeCl−4 at an distortion angle of 2.7◦
as calculated by the ROHF-INDO/S-CI method (reproduced from Ref. [66]).

State Ea
calc Dtotal DGriffith Dmetal Dlig Dmixed

(cm−1) (cm−1) (cm−1) (cm−1) (cm−1)

4T a
1 15 100 +0.070 +0.089 +0.086 +0.001 −0.017

(4 A2) 15 773
(4 E)

4T b
1

b 24 582 −0.077c −0.021 −0.078 0.000 +0.001
(4 E) 24 990
(4 A2)

4T c
1

b 30 666 −0.009 −0.006 −0.002 −0.001 −0.006
(4 E) 31 027
(4 A2)

4� total −0.016 +0.055 +0.005 0.000 −0.022
6� total −0.031d − −0.016 −0.002 −0.013

total −0.047 +0.062 −0.011 −0.002 −0.035

exp. −0.042

DGriffith = considering the low symmetry distortions only; Dmetal = contributions of metal-
SOC alone; Dlig = contributions of ligand-SOC alone; Dmixed = Dtotal − Dmetal − Dlig
a Note that these number can not be directly compared to the experimental transition

energies since the experimental numbers in contrast to the theoretical ones contain spin–
orbit coupling.

b There is considerable configurational mixing among the 4T b
1 (e2t3) and 4T c

1 (e1t4) states.
c This number contains a −0.012 cm−1 contribution from the 4E state following from 4T b

2 .
d This number contains contributions from many states. There is a significant amount of

electronic relaxation in the CT excited states of FeCl−4 that will be analyzed elsewhere.

tions from sextet charge transfer excited states and from ligand spin–orbit coupling
(ζ(Cl−) = 550 cm−1). These contributions are summarized in Table 11 [66] leading
to a reasonable estimate of the different contributions to the experimental value
of D.

The polarized single crystal absorption and MCD data for Fe(SR)−
4 given in

Fig. 11 show that the 4T a
1 S4-axial splitting is reversed from that of D2d -FeCl−4 with

the 4T a
1x,y lower in energy than 4T a

1z (7975 and 10 525 cm−1, respectively).
Using Eq. (287) these give a D(calc) of −0.7 cm−1. From EPR, D(exp) =

+2.4 cm−1. Again the calculated sign is opposite experiment demonstrating the
dominant role of differential orbital covalency in determining the sign and mag-
nitude of D. The positive sign of D(exp) requires that β2

1 > γ 2
1 , γ 2

2 . This combined
with the experimental energy order of the axial splitting of the 4T a

1 indicate that
the dxz, dyz set is at higher energy than dxy and more antibonding with the ligands.
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Fig. 11. Polarized single crystal absorption and MCD spectra of [Fe(SR)4][NEt4]
(R = 2,3,5,6-Me4C6H).

This is important since the Fe(SR)−
4 complex has a flattened sulfur core congru-

ent with that of FeCl−4 . However, the bonding of the sulfur to the R group with
a R–S–Fe angle of 102.4◦ tilts the p orbital of the sulfur involved in σ -bonding to
the iron off the S–Fe axis (i. e. a pseudo-σ interaction) and into the xz, yz plane.
This demonstrates that the orientation of the thiolate–metal bond in the protein
can play a major role in determining the electronic structure of iron sulfur active
sites and its contribution to reactivity in electron transfer.

9.6 Computational Approaches to SH Parameters

This chapter is devoted to an overview of computational approaches to SH param-
eters. This requires an, at least, superficial understanding of the types of electronic
structure theories that can presently be applied to molecules the size of some tens
of atoms. These theories are either based on the Hartree–Fock (HF) method or
density functional theory (DFT) both of which will be briefly described. It will then
be shown how these theories can be used to predict SH parameters and it will be
found that in practice algorithms have to be used that are significantly different from
the general theory developed in the previous chapters. This is because in practice
it turns out to be exceedingly difficult to accurately calculate wavefunctions of suf-
ficient accuracy for a large number of states (HF based theories) or to the fact that
many electron wavefunctions are not available (DFT).
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9.6.1 Hartree–Fock Theory

In Hartree–Fock theory [77] the many electron wavefunction of the ground state
is approximated by a single Slater determinant of the form of Eq. (98). According
to the variational principle the energetically best possible solution within this ap-
proximation is obtained by varying the MOs {ψ} to make the energy expectation
value 〈�|ĤBO |�〉 stationary. For practical reasons the MOs are always expanded in
a linear combination of basis functions according to Eq. (100) using a one-electron
basis {ϕ} that in most cases consists of Gaussian or Slater functions. This procedure
is the well-known Hartree–Fock–Roothaan (HF) approximation. When applied to
open-shell systems at least two variants of the HF procedure are known. In the spin-
unrestricted (UHF) formalism, the orbitals for spin-up and spin-down electrons are
allowed to have different spatial parts, leading to a Slater determinant of the form:

� = |ψα
1 . . . ψα

nα
ψ

β

1 . . . ψ
β

nβ
| (288)

where nα is the number of spin-up electrons and nβ is the number of spin-down
electrons. A state with total spin S is approximated by a UHF determinant with
nα − nβ = 2S. The MOs {ψα, ψβ} satisfy the canonical UHF equations:

F̂αψα
i = εα

i ψα
i (289)

F̂βψ
β
i = ε

β
i ψ

β
i (290)

where F̂σ (σ = α, β) is the Fock operator for spin-σ :

F̂σ = ĥ +
∑
j∈α

Ĵα
j − K̂ α

j +
∑
j∈β

Ĵβ
j (291)

where ĥ is the one-electron operator:

ĥ = − 1
2∇2 −

∑
A

Z A

|RA − r| (292)

Jσ
j is the Coulomb-operator:

Ĵσ
j =

∫ |ψσ
j (r′)|2

|r − r′| dr′ (293)

and K σ
j is the non-local exchange operator that is defined by its action on any orbital

ψ :

K̂ σ
j ψ(r) =

∫
ψσ

j (r′)ψ(r′)
|r − r′| dr′ψσ

j (r) (294)
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Solution of the UHF equations yields the two sets of MO coefficients {cα, cβ}
and orbital-energies {εα, εβ} as well as the total energy EU H F :

EU H F =
∑
i,σ

nσ
i 〈ψσ

i |ĥ|ψσ
i 〉

+ 1
2

∑
σ,i

∑
σ ′, j

nσ
i nσ ′

j

(〈ψσ
i ψσ

i |r−1
12 |ψσ ′

j ψσ ′
j 〉 − δσσ ′ 〈ψσ

i ψσ ′
j |r−1

12 |ψσ ′
i ψσ

j 〉)
+ EN N (295)

The HF method delivers the best possible energy within the restriction that the
wavefunction has the form of a single Slater determinant. It treats the electron–
electron repulsion in an average way in the sense that each electron moves in the
potential created by the nuclei and the average potential created by the other elec-
trons. Thus, still lacking from the HF approximation is the instantaneous electron–
electron interaction (the so-called “dynamical correlation”). Also lacking from the
HF approximation is the flexibility to describe situations (like bond breaking) where
a single Slater determinant does not constitute a reasonable approximation (this is
the so-called “static correlation”). The correlation energy is not very large in rela-
tion to the total energy. However, it is chemically significant. While the HF approx-
imation gives ≈99% of the correct non-relativistic energy, the remaining percent
corresponds to hundreds or thousands of kcal mol−1 and therefore the errors of
the HF approximation are large on a chemical scale and methods to treat the in-
terelectronic correlation are required. For an introduction see Szabo and Ostlund
[77] or Jensen [149].

The strong point of the spin-unrestricted method is that it allows for a polariza-
tion of the electron cloud and is therefore able to describe negative spin-densities
and phenomena such as core-polarization that are indispensable for the accurate
calculation of HFCs. The polarization arises from the exchange terms that only exist
for electrons of like spin. Since there are more spin-up than spin-down electrons,
the spin-up electrons move in a more attractive potential. Consequently, the distri-
bution of spin-up and spin-down electrons in formally doubly occupied MOs will
be slightly different. The spin-density from the UHF wavefunction is:

ρ
α−β
U H F (r) =

∑
i

nα
i |ψα

i (r)|2 − nβ
i |ψβ

i (r)|2

=
∑
pq

Pα−β
pq ϕµ(r)ϕν(r) (296)

where nα
i and nβ

i are the occupation numbers of the relevant MOs. with the spin-
density matrix:

Pα−β
pq =

∑
i

nα
i cα

pi c
α
qi − nβ

i cβ
pi c

β
qi (297)

Using this spin-density, all first order properties considered above can be calcu-
lated. These are the relativistic mass correction to the g-tensor (g(RMC)

µν , Eq. 134),
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the gauge correction (g(GC)
µν , Eq. 137), the spin dipolar HFC (A(A;d)

µν , Eq. 143) and
the Fermi-contact term (A(A)

iso , Eq. 142). The remaining second order terms (the
ZFS and the second order spin–orbit coupling contributions to the g-tensors and
the HFC) cannot be dealt with in this way. Techniques to treat these terms are
described below.

However, the UHF method has the well-known defect that it is not an eigenfunc-
tion of the total spin squared, i. e. 〈Ŝ2〉U H F �= S(S+1) and this can have undesirable
consequences. In many cases, however, 〈Ŝ2〉U H F ≈ S(S + 1) and the UHF wave-
function is a reasonable approximation to a state of spin S.

The alternative to the UHF method is the restricted open-shell HF (ROHF)
method. In this case the trial wavefunction � is of the form of Eq. (101) and thus
has a set of doubly occupied and a set of singly occupied MOs. The ROHF equa-
tions are somewhat different from the UHF equations. Their solution yields a set
of orbitals and orbital energies and the complete formalism of Section 9.3.5 is di-
rectly applicable. The ROHF wavefunction has less variational degrees of freedom
than the UHF wavefunction and therefore gives a slightly higher energy. In addi-
tion, at the ROHF level one cannot describe core-polarization because the spin
density (Eq. 104) is positive everywhere. However, the ROHF determinant is a
spin-eigenfunction.

Thus, both the UHF and the ROHF have certain advantages and will be used in
different contexts. The UHF procedure is usually preferable for the calculation of
HFCs while the ROHF wavefunction is a suitable starting point for more accurate
treatments.

9.6.2 Configuration Interaction

The theory of SH parameters in Section 9.3 was formulated in a set of many electron
wavefunctions for the ground- as well as excited states. Computationally, a set of
many electron wavefunctions may be obtained from the procedure of configuration
interaction (CI). In this method the many electron wavefunctions are expanded in
terms of CSFs as:

�I =
∑

J

CJ I  j (298)

where the { } are CSFs as described in Section 9.3.5.1. In Section 9.3.5.1 the treat-
ment was focused on CSFs that are singly excited relative to the ground state. How-
ever, in the general case the set { } may also contain doubly, triply, etc. excited CSFs.
The CI coefficients C are obtained from solving the secular equations:

HC = EC (299)

where H is the matrix of the BO Hamiltonian in the { } basis:

HI J = 〈 I |ĤB O | j 〉 (300)



9.6 Computational Approaches to SH Parameters 427

The matrix elements (300) are fairly difficult to calculate and contain the one-
electron integrals 〈ψi |ĥ|ψ j 〉 and the two electron integrals 〈ψiψ j |r−1

12 |ψkψl〉. It is
clear, that the number of two-electron integrals as well as the number of possible
CSFs { } is enormous. Accurate CI calculations may involve as many as 106–1010

CSFs and are computationally extremely demanding. However, efficient algorithms
to calculate the ground and a number of excited states by this procedure exist [150–
152].

Given a set of many electron CI wavefunctions {�} and their energies {E}, the
general equations derived in Sections 9.3.4.1–9.3.4.3 may be directly evaluated with-
out any further approximation. The matrix elements that occur in these equations
present considerable technical challenges (for details see [153–155]). Furthermore,
it is clear that the infinite summations that occur in Sections 9.3.4.1–9.3.4.3 must be
truncated since only a limited number of excited states can be calculated with a rea-
sonable effort. However, in many cases the SH parameters are dominated by only
a few excited states and some of the most accurate calculations of SH parameters
have been done with the CI formalism (vide infra). In general, however, the method
is computationally too demanding to be applied to large molecules and alternative
procedures are needed and will be described below.

9.6.3 Density Functional Theory

DFT is a fundamentally different approach to electronic structure theory that has be-
come extremely popular in recent years because it gives results that are significantly
better than those delivered by the HF method with about the same computational
effort. The theory is fairly involved [156] and only a cursory introduction can be
presented here. DFT is based on the Hohenberg–Kohn theorems [157] the first of
which states that the exact ground state energy of a non-degenerate ground state
is a unique functional of the electron density only. The exact non-relativistic total
energy can thus be written:

E0[ρα, ρβ ] = T [ρα, ρβ ] + Ven[ρα, ρβ ] + J [ρα, ρβ ]

+EXC [ρα, ρβ ] + VN N (301)

where ρα and ρβ are the densities of spin-up and spin-down electrons, T is the
electronic kinetic energy, Ven the electron–nuclear attraction, J the Coulomb energy
and EXC is the exchange correlation functional that describes all contributions to
the energy in terms of only the spin-up and spin-down densities.

In practice the so-called Kohn–Sham (KS) method [158] is used in order to cal-
culate the electron density. The KS construction features a fictitious system of non-
interacting electrons that share the same electron density with the real interacting
system. The wavefunction of the non-interacting reference system can be taken as a
single determinant of the UHF type. Application of the variational principle (which
is valid due to the second Hohenberg–Kohn theorem) then leads to the KS equa-
tions in their spin-polarized form:
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{ − 1
2∇2 + V̂en + V̂C + V̂ σ

XC

}
ψσ

i (r) = εσ
i ψσ

i (r) (302)

where the KS molecular orbitals {ψ} and their energies {ε} where introduced and
the Coulomb operator, V̂C , is:

V̂C =
∑
jσ

Ĵσ
j (303)

The exchange-correlation potential V σ
XC is given by the functional derivative of

ẼXC [ρα, ρβ ] with respect to ρσ :

V σ
XC = δ ẼXC [ρα, ρβ ]

δρσ (r)
(304)

Here, ẼXC is essentially EXC but also contains a small contribution to the kinetic
energy that is not covered directly in the KS method [156]. Thus, if the exchange-
correlation functional were known, DFT in the KS formalism would give the exact
energy and electron density of the ground state. However, the exact many elec-
tron wavefunction that leads to the exact energy remains unknown as is the exact
exchange-correlation functional. However, successful approximate forms for ẼXC
have been under intense development in the past three decades and have led to
computationally tractable expressions that are widely used (reviews are available
elsewhere [159–168]). Essentially three variants are presently in common use (a)
the local density approximation (LDA) in which only the densities ρα and ρβ en-
ter V σ

XC , (b) the generalized gradient approximation (GGA) where the densities as
well as their gradients ∇ρα and ∇ρβ contribute and (c) the hybrid functionals where
in addition to the densities and their gradients a part of the HF exchange term is
mixed into the density functional. In many applications it is found that the accuracy
of the functions increases in order (a) < (b) < (c) with the hybrid B3LYP functional
[169–172] being the most popular member of class (c) and the Becke–Perdew (BP)
functional [169, 173] the most popular member of class (b) [174].

From a computational perspective, the KS equations look quite similar to the HF
equations of Section 9.6.1 although they have been derived from a completely differ-
ent perspective. The main difference is the replacement of the HF exchange term by
the local exchange-correlation potential V σ

XC . For a full discussion of the many sub-
tleties and problems associated with DFT, the excellent monographs of Parr and
Yang [156] and Koch and Holthausen [174] should be consulted. The exchange-
correlation potential is, in general, fairly complicated and its matrix elements are
usually calculated by efficient three dimensional numerical integration techniques
[175, 176].

9.6.4 Coupled-perturbed SCF Theory

The coupled perturbed SCF (CP-SCF) theory [177–183] is an attractive alternative
to the use of computationally demanding CI type procedure for the calculation of
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second order properties such as the spin–orbit coupling contributions to the g-tensor
and the HFC. It is the basis of all modern approaches to second order properties
that are tractable for large molecules. The main idea is to express the second or-
der property as a mixed second derivative of the total energy with respect to two
perturbations λ and µ.

Tλµ = ∂2 E(λ, µ)

∂λ∂µ
(305)

where “T ” represents a second order property and λ and µ symbolize two perturba-
tions that are associated with the perturbing one-electron operators λĥλ and µĥµ.
In this form infinite summations over excited states are avoided. If the zero-order
wavefunction is variational (as is the case for the HF and KS methods), it can be
shown that it is sufficient to calculate the response of the wavefunction with respect
to one perturbation in order to evaluate the mixed second derivative. Also, it is im-
material in which order the two perturbations are treated [183]. This is known as
the interchange theorem of double-perturbation theory [12, 183].

For convenience, the self-consistent field (SCF) operator, F̂σ , is written in a form
that is valid for either HF, pure DFT or hybrid DFT:

F̂σ = ĥ(�r) + V̂C (�r) + cH F K̂ σ + cDF V̂ σ
XC [ρα, ρβ ](�r) (306)

The parameter cH F equals one in HF theory, zero in “pure” DFT and assumes
values in the range between 0.05 and 0.5 in hybrid DFT. The parameter cDF equals
zero in HF theory and one in any form of DFT.

The perturbation treatment consists of supplementing the SCF operator by the
perturbing operator λĥλ (i. e. F̂σ → F̂σ +λĥλ) and expanding the SCF-operator, the
spin-orbitals and the orbital energies as Taylor series in the perturbation parameter
λ:

εσ
i (λ) = ε

σ(0)
i + λε

σ(1)
i + O(λ2) (307)

ψσ
i (λ) = ψ

σ(0)
i + λψ

σ(1)
i + O(λ2) (308)

F̂σ (λ) = F̂σ(0) + λF̂σ(1) + O(λ2) (309)

Collecting terms of the same order in the perturbation gives:

(F̂σ(0) − ε
σ(0)
i )ψ

σ(1)
i + (F̂σ(1) − ε

σ(1)
i )ψ

σ(0)
i = 0 (310)

The most difficult part is the calculation of the first order perturbed SCF operator
f̂ σ(1) that is defined by:

F̂σ(1) = ∂ F̂σ (λ)

∂λ

∣∣∣∣
λ=0

(311)

The derivative is complicated in so far as the operator F̂σ (λ) involves the λ-
dependent term λĥλ and also the perturbed orbitals ψ

σ(1)
i . Without compromising
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the generality of the treatment, the first order orbitals can be written as a sum over
the zeroth order virtual orbitals of the same spin:

ψ
σ(1)
i (r) =

∑
a∈σ

Uσ
iaψσ(0)

a (r) (312)

where the U’s are the first order wavefunction coefficients (throughout indices i, j, k
refer to occupied orbitals, a, b to empty orbitals and the zero order orbitals are as-
sumed real). This gives for the derivative of the density with respect to the pertur-
bation parameter:

∂ρσ (r)
∂λ

= 2
∑

i,a∈σ

nσ
i Re(Uσ

ia)ψ
σ(0)
i (r)ψσ(0)

a (r) (313)

Proceeding term by term, the one-electron operator, ĥ, does not contribute, while
the Coulomb operator gives the term:

∂ V̂C

∂λ
= 2

∑
σ=α,β

∑
i,a∈σ

nσ
i Re(Uσ

ia)

∫
ψ

σ(0)
i (r′)ψσ(0)

a (r′)
|r − r′| dr′ (314)

The exchange operator contributes the following term to the derivative:〈
ψσ ′

a

∣∣∣∣∣∂ K̂ σ

∂λ

∣∣∣∣∣ ψσ ′
i

〉
= −

∑
j,b∈σ

nσ
j

(
(Uσ

jb)
∗〈ψσ ′(0)

a ψ
σ(0)
j |r−1

12 |ψσ(0)
b ψ

σ ′(0)
i 〉

+Uσ
jb〈ψσ ′(0)

a ψ
σ(0)
b |r−1

12 |ψσ(0)
j ψ

σ ′(0)
i 〉) (315)

Finally, the exchange correlation potential contributes the following term (Parr
and Yang [156], appendix A):

∂ V̂XC [ρα, ρβ ](r)
∂λ

=
∑

σ ′=α,β

∫
∂ V̂XC [ρα, ρβ ]

∂ρσ ′(r′)

∣∣∣∣
ρσ ′=ρσ ′ (λ=0)

∂ρσ ′(r′)
∂λ

∣∣∣∣
λ=0

dr′

=
∑

σ ′=α,β

∫
f σσ ′
xc [ρα, ρβ ](r, r′)

∂ρσ ′(r′)
∂λ

∣∣∣∣
λ=0

dr′

= 2
∑

σ ′=α,β

∑
j,b∈σ ′

nσ ′
j Re(Uσ ′

jb)

·
∫

f σσ ′
xc [ρα, ρβ ](r, r′)ψσ ′(0)

j (r′)ψσ ′(0)
b (r′)dr′ (316)

The exchange-correlation kernel f σσ ′
xc [ρα, ρβ ](r, r′) is familiar from time depen-

dent DFT in the adiabatic approximation [184–186]. In the commonly encountered
case where the exchange-correlation potential is a simply function of the density
and its gradients, a delta-function δ(r − r′) arises in the integral (see Parr and Yang
[156], appendix A).
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Separating the real and imaginary parts gives the following coupled-perturbed
SCF equations:

Re(V σ
ai ) +

∑
σ ′=α,β

∑
j,b

Eσσ ′
ia, jb Re(U jb)

σ ′ + Im(V σ
ai )

+
∑

σ ′=α,β

∑
j,b

Mσσ ′
ia, jb Im(U jb)

σ ′
) = 0 (317)

where the vector Vσ has the elements:

V σ
ai = 〈ψσ(0)

a |ĥλ|ψσ(0)
i 〉 (318)

As first discussed in the framework of the closed shell HF method by Stevens,
Pitzer and Lipscomb [177], the matrices Eσσ ′

ia, jb and Mσσ ′
ia, jb are the “electric” and

“magnetic” hessians respectively. For the spin-polarized hybrid DFT case one ob-
tains:

Eσσ ′
ia, jb = (εσ(0)

a − ε
σ(0)
i )δia, jbδσσ ′ + 2〈ψσ(0)

a ψ
σ(0)
i |r−1

12 |ψσ ′(0)
j ψ

σ ′(0)
b 〉

−cH Fδσσ ′ 〈ψσ(0)
a ψ

σ ′(0)
j |r−1

12 |ψσ ′(0)
b ψ

σ(0)
i 〉

−cH Fδσσ ′ 〈ψσ(0)
a ψ

σ ′(0)
b |r−1

12 |ψσ ′(0)
j ψ

σ(0)
i 〉

+2cDF 〈ψσ(0)
a ψ

σ(0)
i | f σσ ′

XC |ψσ ′(0)
b ψ

σ ′(0)
j 〉 (319)

Mσσ ′
ia, jb = (εσ(0)

a − ε
σ(0)
i )δia, jbδσσ ′ + cH Fδσσ ′ 〈ψσ(0)

a ψ
σ ′(0)
j |r−1

12 |ψσ(0)
i ψ

σ ′(0)
b 〉

−cH Fδσσ ′ 〈ψσ(0)
a ψ

σ ′(0)
b |ψσ(0)

i ψ
σ ′(0)
j |〉 (320)

Note that the neither the Coulomb nor the DFT exchange-correlation terms con-
tribute to the magnetic hessian due to their simple multiplicative nature. The cor-
responding equations for the closed shell case and in the presence of current de-
pendent terms in the exchange correlation potential have been discussed [187, 188].
Thus, the main quantities that enter the CP-SCF equations are the orbital energies,
the matrix elements of the perturbing operator and two electron integrals over oc-
cupied and virtual molecular orbitals.

In the case that the matrix element of the perturbation are purely imaginary the
coefficients Uσ

ia are also purely imaginary. Furthermore, in this particular case the
magnetic hessian is diagonal (as long as cH F = 0) and one obtains [187, 188]:

Uσ
ia = i Im〈ψσ

a |hλ|ψσ
i 〉

ε
σ(0)
a − ε

σ(0)
i

(321)

which is just the result one would obtain from standard Rayleigh–Schrödinger per-
turbation theory, where the fact that the SCF operator F̂σ depends on the perturbed
molecular orbitals is neglected. This is known as the uncoupled approximation which
only becomes exact for pure density functionals and in the case where the matrix



432 9 Interpretation and Calculation of Spin-Hamiltonian Parameters . . .

elements of the perturbation are purely imaginary. However, for the HF method
and hybrid density functionals the following linear equation system must be solved:(

Mαα 0
0 Mββ

) (
Im(Uα)

Im(Uβ)

)
= −

(
Im(Vα)

Im(Vβ)

)
(322)

The linear equation system is of large dimension and can, in general, only be
solved iteratively. For details we refer to the literature [180, 189, 190].

Having obtained the coefficients of the first order perturbed wavefunction the
second-order property is calculated as:

Tµλ =
∑
σ

∑
i,a∈σ

Uλσ
ai 〈ψσ

i |hµ|ψσ
a 〉 + Uλσ ∗

ia 〈ψσ
a |hµ|ψσ

i 〉 (323)

where the sum is over the occupied orbitals i and empty orbitals a of spin σ .

9.6.5 Relativistic Methods

As an alternative to the use of perturbation theory, the relativistic effects (i. e. the
scalar relativistic effects, Section 9.3.2.5 and the spin–orbit coupling, Section 9.3.2.2)
can be directly incorporated into the HF or DFT electronic structure calculation.
In this case, first order perturbation theory is sufficient to calculate all magnetic
parameters. The resulting methods do not suffer from divergence problems that
are occasionally a problem for perturbation treatments.

However, the direct inclusion of relativistic effects presents a challenging problem
for electronic structure calculations. This arises because the relativistic operator in
the Breit–Pauli form discussed in this review are not bounded from below and when
applied in a variational procedure leads to variational collapse. Thus, these operators
should only be used in perturbation calculations and operators with regular behavior
must be derived in a different form from the Dirac equation.

One of the most popular relativistic method at present is the ZORA (zero or-
der regular approximation) method that can be traced back to the work of Chang,
Pelissier and Durand [191] and that has been extensively developed by the Ams-
terdam group in the context of DFT [192–195]. In this method one starts from the
split form of the Dirac equation for the so-called large component ψ (electron like
states):

(V − E)ψ + α2

2
[Ûpω(r)Ûp]ψ = 0 (324)

where V is the effective molecular potential (i. e. the DFT potential V̂ = V̂eN + V̂C +
V̂XC , Section 9.6.3), p is the momentum operator and Û is the vector with Pauli spin
matrices. The function ω(r) is given by:

ω(r) =
(

1 − V − E

2α−2

)−1

(325)
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Expansion of this equation in powers of α2 and elimination of the energy de-
pendence gives to first order the familiar terms described above (Sections 3.2.2 and
3.2.5). An alternative family of relativistic methods is obtained by partitioning the
function ω(r) as follows:

ω(r) = 2α−2

2α−2 − V

(
1 + E

2α−2 − V

)−1

(326)

and expansion of the term in parenthesis. To zeroth order in this expansion the
ZORA method is obtained and the molecular ZORA equations therefore take the
form:

{T̂Z O R A + V̂ }ψi = εiψi (327)

where:

T̂Z O R A = Ûp
α−2

2α−2 − V
Ûp (328)

Solution of these equations in a molecular context with either inclusion of only
scalar relativistic effects and/or SOC has been extensively discussed in the literature
by van Lenthe et al. [192–195] and by Van Wüllen [196]. A HF version has also
been reported [197]. Furthermore, van Lenthe and coworkers have discussed the
calculation of g-values [198], HFCs [199] and quadrupole couplings [200] on the
basis of the ZORA method. The results are discussed below.

Other relativistic methods are possible and in particular we note those based
on the application of the Douglas–Kroll–Hess transformation [201–206]. However,
for details we refer to the specialist literature, in particular to an excellent recent
review by Hess and Marian [61].

9.6.6 Calculation of Zero-field Splittings

Very few general methods for the calculation of ZFSs of transition metal complexes
outside the domain of ligand field theory [207] exist. However, as has been argued
in Sections 4.1.5 and 5.2, ligand field theory is not entirely reliable for the prediction
of ZFSs due to the important contributions of anisotropic covalency that often tend
to counteract the contributions from the low-symmetry ligand field splittings. The
fundamental complication in the first principle prediction of ZFSs is, that excited
states of different spin than the ground state contribute to the ZFS (Sections 9.3.4.2,
9.3.5.2, and 9.4.1.5). In such a situation it is not clear how to formulate a proper
CP-SCF theory. This appears to have precluded so far a proper calculation of ZFSs
by DFT.

In the ab initio HF field some large scale CI calculations were reported that
obtain the ZFSs from a CI that includes the SOC. This procedure yields only the
eigenvalues of the ZFS tensor but not its orientation. However, the calculations were
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done for a fairly large molecule and have lead to good agreement with experiment
[113].

We have developed a general method for the calculation of ZFSs from general
multireference CI (MR-CI) wavefunctions [66]. The method includes all SOC con-
tributions to the ZFS including excited states with a total spin different from that of
the ground state but neglects the direct spin–spin coupling. It is also formulated for
any ground state spin S. However, in order to be able to apply it to large molecules a
semi-empirical Hamiltonian was chosen. This Hamiltonian is the INDO/S Hamilto-
nian of Zerner and coworkers [208–210] that has proven its ability to predict spec-
troscopic properties of transition metal complexes in many applications (reviews
are available elsewhere [211–213]).

As an example of this general methodology consider the case of FeCl4− that
has been treated in some detail [66, 147, 148] (Section 9.5.2). Here the calculations
give insight into the interplay between low-symmetry distortions, covalency effects
and charge-transfer contributions to the observed ZFS. FeCl4− exists as an almost
regular tetrahedron in a S = 5

2 ground state that closely corresponds to the ligand
field picture. In Fig. 12 the contribution from S = 3

2 spin-forbidden, ligand field
excited states and S = 5

2 metal-to-ligand charge transfer excited states to the ZFS
are shown as a function of molecular geometry. The coordinate describes a distor-
tion from a elongated tetrahedron to a flattened tetrahedron, the latter is observed
experimentally [147, 148]. It is observed that the sign of the ZFS changes as the
system goes from a elongated to a flattened tetrahedron and that the contributions
of d–d and MLCT excited states have the same sign, with the d–d states being more
important. However, the sign of the ZFS is opposite of the predictions from ligand
field theory that only consider the low-symmetry distortion but not the differential
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Fig. 12. Contributions of quartet (d–d excited states) and sextet (MLCT excited states) to the
observed ZFS in FeCl−4 as a function of low-symmetry distortion The experimental D-value
is indicated by a dashed horizontal line (reproduced from Ref. [66]).
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covalencies (Ref. [114], see Section 9.5.2). However, the calculations are in agree-
ment with experiment while ligand field theory is not. The ZFS of FeCl−4 can be
further analyzed in terms of metal- and ligand SOC contributions and for details
we refer to the literature [66, 147, 148] and Sections 5.2 and 4.1.4.

While the semi-empirical procedure used is open to critique, the emerging ap-
plications [214, 215] to low symmetry high-spin Fe(III) and Mn(III) [216] protein
active sites demonstrate that the method is capable of predicting the correct sign of
the ZFSs and their magnitudes to within a factor of two. In addition, it appears that
the orientation of the ZFS tensors is predicted with reasonable accuracy which is
particularly useful in combination with MCD spectroscopy [143, 214]. While these
initial results appear to be promising it is clear that further developments are needed.
Especially a DFT method for ZFSs is needed in order to provide increasingly reli-
able prediction of this important magnetic property (a review is available elsewhere
[217]).

9.6.7 Calculation of g-Values

Compared to ZFSs a variety of general methods are available for the prediction
of g-tensors. These have partly been inspired by the close analogy of g-tensors to
NMR chemical shifts [218–223], and closely analogous computational procedures
have been used to predict the two quantities.

9.6.7.1 The Gauge Problem

There is one further complication that must be considered in the context of g-tensor
calculations. In the equations of Sections 3.4.2, 3.5.3, and 4.1.6 for the g-tensor the
orbital-Zeeman operator appears which includes the angular momentum operator.
However, the angular momentum is measured relative to the chosen origin of the
coordinate system. This means that if a different choice for the origin of the overall
coordinate system is made, the predictions for the g-tensor will change. This obvi-
ously is a undesirable feature of the theory as the g-tensor is of course independent
of the origin. As explained in detail by Harriman [8] and McWeeny [12] a change
of gauge is offset by a phase change in the wavefunction in the exact treatment.
(In a more general context the gauge dependence arises from the arbitrariness of
the vector potential. Addition of the gradient of an arbitrary gauge potential to
the vector potential does not change the electric and magnetic fields and there-
fore not the basic physics. Such a change of gauge can consequently not change the
values of observables. The origin dependence discussed here is only one particular
aspect of the more general gauge problem.) However, in the present context we
are involved in a perturbation calculation with fixed zero order functions and the
flexibility for the phase change is not built in into the basic set of states. This prob-
lem is widely acknowledged in the prediction of magnetic properties such as NMR
chemical shifts, magnetizabilities and g-tensors. It appears that the g-tensor is the
least sensitive of the three properties with respect to the choice of origin. Thus, if
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a “reasonable” origin is chosen, the gauge dependence of the results is fairly small
and may be ignored. This is referred to as the “common gauge” (CG) approach to
the problem. The origin may be chosen to be coincident with the center of mass or
the center of nuclear charge. However, there is one choice that is superior from a
theoretical point of view. Luzanov et al. [224] have argued that if one chooses the
center of electronic charge as the origin it is to be expected that the results most
closely resemble the fully gauge invariant results. The electronic charge centroid is
computed from:

RG = 1
Ne

〈
0SS

∣∣∣∣∣∑
i

ri

∣∣∣∣∣ 0SS

〉
(329)

Thus, the computation of RG only involves the evaluation of electric dipole inte-
grals which are easy to calculate. There are at least two more rigorous approaches
to the gauge problem. The more involved solution is the use of one electron orbitals
that are dependent on the magnetic field [225, 226]. These orbitals are known as
“London orbitals” [225] and the method is identified by the acronym GIAO (Gauge
Including Atomic Orbital). The GIAOs are given by:

ϕG I AO
i (r, B) = ϕi (r) exp

(
− iα

2
(B × RA)r

)
(330)

where ϕi (r) is a member of the “normal” atomic orbital basis set which is centered
at position RA. The use of GIAOs in place of normal orbitals leads to technical
complications in the calculation of magnetic properties but is known to converge
fast with basis set size and give good results [227–230]. The second popular approach
to the treatment of the gauge dependence of magnetic properties is known by the
acronym IGLO (Individual Gauge for Localized Orbitals) and has been developed
by Kutzelnigg and coworkers [218, 219]. In this case the magnetic field dependent
phase factors are not attached to the basis functions but to the MOs themselves that,
however, have been localized according to one of the popular criteria [231–233].
The IGLO equations are somewhat easier to evaluate than the GIAO equations
and the convergence of the IGLO and GIAO procedure appears to be similar with,
perhaps, a slight advantage for the GIAO method [227, 230]. A related method that
has found application in the field of NMR chemical shifts is the LORG (Localized
orbital local origin) due to Hansen and Bouman [234].

9.6.7.2 Methods for g-Tensor Calculations

There have been some early ab initio attempts to calculate g-values that are, how-
ever, not particularly conclusive because rather small basis sets had to be used at the
time. The field was revived by Lushington and Grein [235, 236] who made important
contributions to the ab initio prediction of g-values at the Hartree–Fock (HF) and
more recently, the MR-CI level [235–240]. While the HF level methods can also
be applied to larger molecules, the much more demanding MR-CI methodology is
restricted to small molecules where, however, it gives accurate results. Since all of
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these ab initio approaches are formulated as sum-over-states (SOS) theories it is
necessary to explicitly generate a “sufficient number” of excited state wavefunc-
tions which is a laborious and time consuming task. These explicit constructions
can be avoided by the elegant response theory treatment developed by Engström
et al. [241–245] that has already proved useful for the calculation of g-values of
biologically relevant phenoxyl radicals [244] and nitroxide spin labels [245]. How-
ever, this methodology has not yet been applied to transition metal complexes. An
alternative to perturbation theory is to include the relevant operators in the SCF
treatment. This route has been followed by Jayatilaka who has obtained promis-
ing results with a generalized two component HF methodology [246]. However, in
cases where electron correlation is important the method is expected to break down.
The only reported transition metal application has been CoCl−4 and in this case the
method gives reasonable agreement with experiment [246]. (Note that CoCl−4 is an
S = 3/2 system and that the calculated g-values were effective g-values of the low-
est Kramers doublet rather than real ones.) A systematic study for transition metal
complexes is lacking.

As for the ZFSs we have previously developed a MR-CI approach to g-values [66,
155] but have chosen to implement it in connection with semi-empirical quantum
chemical methods which allowed application to transition metal complexes of Cu(II)
[155] and Mo(V) [247]. It appears from these studies that the approach is capable
of giving semi-quantitative agreement with experimental values. In the study of 18
Cu(II) complexes the g-values where predicted with a standard deviation of 21 ppt, a
slope of the correlation line of unity and an R-factor of 0.97 [155]. The results where
taken as an indication that the INDO/S semi-empirical methods give a reasonable
description of Cu(II) complexes. However, the remaining errors due to the crude
approximations made in the semi-empirical treatment can not be remedied.

Other semi-empirical approaches for g-values have been described in the liter-
ature [83, 108, 248–258] but none has been systematically evaluated for transition
metal complexes. The shortcoming of the semi-empirical approach is the limited re-
liability due to the crude approximations made and the parameterization that may
only be valid for certain classes of compounds.

There have been a number of significant contributions to the field of g-value
calculations with density functional theory. The earliest attempts to use DFT to
calculate magnetic resonance parameters appear to be due to Geurts et al. [259]
using uncoupled perturbation theory and the Hartree–Fock–Slater (HFS) variant of
DFT. This perturbation method (but in conjunction with more modern functionals
based on the generalized gradient approximation (GGA)) has more recently been
applied by Belanzoni et al. to TiF3 [260, 261]. Early work with the Xα-scattered
wave method should also been mentioned [140, 141] (vide supra).

More recently, Schreckenbach and Ziegler [221, 262] reported the development
of a gauge including atomic orbital (GIAO) method for LSD and GGA function-
als and provided a valuable collection of test results. They demonstrated that their
method is more accurate than the older HF based treatments. However, some fail-
ures were also noted [221, 262]. Patchkovskii and Ziegler reported several applica-
tions to large transition metal complexes with this methodology and demonstrated
its usefulness for the interpretation of experimental data [263–266]. In particular
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the methods has been applied to d1 porphyrins [265], nitrosoporphyrins [264] and
also to small anionic transition metal complexes [263]. A generalization of their
method to calculate g-values to high-spin radicals with mostly encouraging results
has recently been published [266].

Van Lenthe et al. made significant contributions to relativistic DFT within the
ZORA approach and applied it to the prediction of g-values in small molecules
[198] and iron-porphyrins [267]. The latter study [267] demonstrates the potential
of the ZORA method for orbitally nearly degenerate molecules where traditional
perturbation theory is difficult to apply. Recently, g-value and HFC calculations
for two Ni complexes were reported with this method by Stein et al. [268] and
most recently by the same authors for the active site of Hydrogenase [269]. These
studies and those of Patchkovskii and Ziegler [263–266] demonstrate the potential
of DFT for the elucidation of the structures of biologically relevant intermediates
that may not be crystallographically characterized but are amenable to spectro-
scopic analysis. Belanzoni et al. reported a detailed evaluation of the ZORA ap-
proach for two and three atomic linear molecules in 2" states that contain heavy
atoms [270]. Reasonable agreement with experimental g-values was observed with
no systematic error in the g‖-component and an overestimation of the g-shift in the
g⊥-component. Limitations of the presently available ZORA method are that it
is valid only for a single unpaired electron and can only be used in spin-restricted
formalisms.

An important contribution to the DFT prediction of g-values and its extensive
numerical evaluation was presented by Malkina et al. [271]. The latter authors also
used uncoupled SCF perturbation theory in the spin unrestricted formalism. In par-
ticular Malkina et al. used accurate mean field spin-orbit operators [50, 61] and eval-
uated the potential of relativistic effective core potentials for g-value calculations. It
was demonstrated that the method in combination with the popular BP functional
[169, 173] gives accurate predictions for radicals made of light atoms. When applied
to transition metal complexes, Malkina et al. found that the slope of the regression
line was ≈0.6 which indicates a systematic underestimation of the g-shifts by this
approach [271].

Most recently the DFT approach to g-values was extended to also include hybrid
functionals [98]. In this work, the coupled-perturbed KS theory had to be used
because the magnetic hessian (Section 9.6.4) is not diagonal for hybrid functionals.

The most important results gathered from all of the DFT studies that have been
reported so far may be summarized as follows: (1) g-tensor calculations are only
moderately sensitive to the basis sets used. Standard valence-double zeta basis sets
with a single set of polarization functions yield reasonable results; (2) The effects
of the gauge dependence of the g-tensor are not very large as long as the basis sets
used are of reasonable quality (see (1)) and the origin is reasonably chosen; (3) The
performance of different density functionals is rather similar (GGA functionals offer
at best minor improvements over LDA functionals and hybrid functionals are not
grossly superior to either GGA or LDA functionals); (4) The DFT methods are
capable of giving reasonable to good agreement with experiment for main group
radicals but none of them has been found to be capable of providing uniformly
quantitative agreement with experiment for transition metal complexes.
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In order to make these statements more quantitative we have compiled the results
of different DFT and ab initio approaches for a series of small radicals in Table 12.
From the table it is evident that all DFT method provide rather good agreement
with the experimental values (Fig. 13). The typical error is ±500–1000 ppm for most
of the methods. Given that g-values are difficult to measure to an accuracy better
than ≈100 ppm this agreement should be regarded as satisfactory, especially since
none of the calculations took effects of the environment (mostly inert gas matri-
ces) into account. From the comparison it also appears that the performance of
the LDA, GGA and hybrid density functional methods is roughly comparable and
that all methods perform better than the HF method. The most accurate values are
delivered by the ab initio MR-CI method but, as discussed above, this method is
not applicable to large molecules, at least not in the near future.

The application to a number of transition metal complexes is made in Table 13
and Fig. 14. Here, it is seen that the prediction of g-values is far more difficult
and disagreement with the experimentally measured g-shifts by a factor of two is
not uncommon. It appears that the hybrid density functionals such as B3LYP and
PBE0 have a slight advantage over GGA and LSD functionals. One of the under-
lying reasons is that hybrid DFTs predict the covalencies of the chemical bonds
in transition metal complexes somewhat better than the LSD and GGA function-
als. However, even the hybrid functionals, that predict HFCs in transition metal
complexes well, lead to sometimes seriously underestimated g-shifts. This has been
attributed, at least in part, to too large energy denominators that make the systems
too “stiff” with respect to the external perturbation provided by the magnetic field
[98].
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Fig. 14. Correlation between theoretical and experimental g-shifts for transition metal com-
plexes as predicted from two different popular density functionals. Triangles – hybrid B3LYP
functional. Circles – GGA BP functional. The dotted line is a correlation line with unit slope.
The dashed line is the observed correlation for the B3LYP functional. For individual results
see Table 13.

9.6.7.3 Some Challenges for DFT Treatments

It is presently not clear which factors are responsible for the errors in the density
functionals. It appears that the excessive covalency found in the LSD and GGA
functionals is a consequence of the self-interaction error in DFT as has been early
on discussed by Perdew and Zunger [272]. Presently methods are being developed
that correct these deficiencies [273–276] but much remains to be done before they
enter the standard arsenal of mainstream computational methods. As an alternative
it appears to be promising to develop density functionals that, by construction, have
no self-interaction and Görling has recently developed methods that feature an exact
(i. e. self-interaction free) local exchange part [277, 278]. Again, more work is needed
before these methods become commonplace. Both, self-interaction corrections and
exact exchange methods also solve the problem that the presently used density
functionals show an erroneously fast decay of the exchange-correlation potential
in the long distance limit which is responsible for the fact that orbital energies of
the occupied MOs in DFT methods are several eV higher than minus the lowest
ionization energy of the system [165]. A shortcoming of all presently existing DFT
methods is that they do not have a dependence of the current density,

j = −αA
∑

i

ψ∗
i ψi + i

α

2

∑
i

ψ∗
i ∇ψi − ψi∇ψ∗

i (331)

as they should for systems placed in magnetic fields [185, 187, 188]. Methods which
do include current terms have been developed [185, 187, 188] but these are not
available in standard computational packages and do not lead to the improved pre-
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diction of magnetic properties [187, 188]. A subtle problem is that the SOC is a two
electron operator but only the one-electron electron and spin densities are known
in DFT. It is not clear how to calculate two electron properties in this approach.
While the use of the non-interacting reference wavefunction in place of the real
many electron wavefunction appears to give reasonable results in many cases, it is
clear that it does not have a Coulomb hole and therefore may give erroneous results
for operators that are strongly dependent on the interelectronic distance (as is the
case for the two electron part of the SOC).

From these considerations and the results presented in the previous section, the
prediction of g-values by DFT methods is presently under development and already
provides a powerful complement to experimental studies. However, a number of
problems need to be solved before DFT has the same accuracy for the prediction
of g-values that has been obtained for the prediction of energetic quantities like
reaction or atomization energies [174].

9.6.8 Calculation of Hyperfine Couplings

According to the discussion in Sections 3.4.3, 3.5.4, and 4.1.7 there are three distinct
contributions to the HFCs which are: (a) the Fermi-contact term, (b) the spin-dipolar
contribution and (c) the spin–orbit coupling contribution. The first two terms are
of first order and the third term is of second order. The three terms behave differ-
ently for the metal and ligand nuclei and are also associated with different technical
challenges. We therefore first review the concept of spin-polarization in the case of
transition metal complexes, then turn to the technical aspects of performing calcu-
lations for HFCs and finally separately discuss the metal- and ligand HFCs.

9.6.8.1 Spin Polarization in Transition Metal Complexes

The concept of spin-polarization has been found to be extremely useful for under-
standing the HFCs of organic radicals which are dominated by the Fermi contact
contribution [279, 280]. The situation for transition metal complexes is rather dif-
ferent in several respects. The present discussion is based on a study by Munzarova,
Kubacek and Kaupp [281] which follows the classic work by Watson and Freeman
[282].

The idea of spin polarization is relatively simple and is best understood from
the UHF energy expression (Eq. 295). According to this expression the electron
repulsion that a given electron feels is obtained by summing up the interactions with
all other electrons. Electrons of like spin contribute a positive Coulomb integral
and a positive exchange integral but with a negative sign to the repulsion, while
electrons of opposite spin only contribute positive Coulomb integrals. Consequently,
the interelectronic repulsion is minimized within the set of spin-up electrons if the
exchange interaction with the singly occupied MOs is maximized. This means that
the optimum situation for spin-up electrons is different than for spin-down electrons
because there is a larger number of spin-up than spin-down electrons in open shell
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molecules. Consequently the shape of the spin-up orbitals will be slightly different
than for the spin-down electrons and upon taking the difference of the squares of
the orbitals a net spin density arises even from the formally doubly occupied MOs.
However, the spin-up orbitals must stay mutually orthogonal and overall the virial
theorem (potential energy/kinetic energy equals two) must be obeyed. In general,
orbitals that have little spatial overlap with the singly occupied orbitals are distorted
towards the singly occupied orbitals and orbitals that occupy the same region in
space are “repelled”. Thus, in organic radicals where the singly occupied orbitals
are of the 2p type the spin-up 2s orbitals are repelled from the singly occupied
MOs leaving a net positive contribution to the spin density at the nucleus while
the spin-up 1s orbitals are attracted towards the 2p shell which leaves a negative
spin-polarization at the nucleus [281]. Prototypical examples are the proton HFCs
in the methyl radical or the benzene anion radical.

A similar, but more complicated situation exists in first row transition metal com-
plexes. Here the singly occupied MOs are derived from the metal 3d-orbitals. Thus,
the 3s shell is polarized to leave positive spin density at the nucleus because the 3s
and 3d shells occupy a similar region in space. By contrast, the 2s shell is polarized
in the opposite direction and leaves a negative spin density at the nucleus. The 1s
shell is also polarized to give negative spin density but here the spin-polarization
is found to be very small.

Again, we follow Munzarova et al. [281] and illustrate the points by plotting the
radial distribution functions for the neutral Mn atom (Fig. 15). It is evident from the
figure that the orbitals with the same main quantum number occupy similar regions
in space and are relatively well separated in space from the next higher and next
lower shell. In particular, the 4s orbital is rather diffuse and shows its maximum
close to typical bonding distances while the 3d orbitals are much more compact.

At the resolution of the plot in Fig. 15, the spin-polarization of the spin-up and
spin-down components is barely visible. Therefore the difference of the densities of
each orbital is plotted in the inner atomic region in Fig. 16. It is clearly observed in
this plot how the 3s shell is polarized to give a positive spin-density at the nucleus
while the 2s shell is negatively polarized. The spin-polarization of the 1s shell is
very small and contributes very little spin density at the nucleus. The contribution
of the 4s subshell is also large and parallels that of the 3s subshell. As long as the
4s subshell is not occupied as is the case with most di- and trivalent ions of the
first transition row the negative contribution of the 2s subshell is larger than the
contribution from the 3s subshell and the net spin density at the nucleus is negative
which results in a large negative contribution to the metal HFC.

The analysis by Munzarova et al. [281] suggests the following interpretation of
these findings: the polarization of the metal 2s shell is due to the enhanced exchange
interaction with the singly occupied metal 3d orbitals and causes the spin-up 2s
orbital to move closer to the metal 3d subshell which leaves a net negative spin
density at the nucleus. The behavior of the 3s subshell is strictly opposite to that
of the 2s subshell (Fig. 16). The reason for this is the orthogonality requirement
between the 2s and the 3s orbital. Thus, the exchange interaction between the 3d
and 3s shells is not optimized by the spin-polarization. On the contrary, this exchange
interaction is increased. The reason for the 2s subshell spin-polarization dominating
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Fig. 16. Spin-polarization of the s-orbitals in the neutral Mn atom (3d54s2; 6S) as calculated
by the UHF method. The inset shows the region at the nucleus in more detail.
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over the 3s one is that the gain in 2s/3d exchange energy is larger than the possible
3s/3d exchange gain. In other words, there is little to gain by distorting the 3s shell
but much to gain by distorting the 2s subshell. Therefore, the 3s subshell merely
reacts to the distortion of the 2s subshell rather than taking an “active” role in the
spin polarization and these changes are necessary in order to “re-equilibrate” the
total energy and wavefunction according to the virial theorem and the orthogonality
requirements. Similar considerations apply to the very small spin-polarization of the
1s shell. (It should be noted, however, that the percentage spin-polarization of the
3s shell is larger than that of the 2s shell. Because of the much larger value of the 2s
orbital at the nucleus, however, the negative contribution to the spin density must
dominate.)

9.6.8.2 Metal Hyperfine Couplings

For the calculation of metal HFCs three contributions must be taken into account:
(1) the isotropic HFCs which is directly proportional to the spin density at the nu-
cleus, (2) the metal dipolar coupling which is proportional to the spin density in the
metal p- and d-orbitals and (3) the SOC corrections to the HFC (Sections 9.3.4.3,
9.3.5.4, and 9.4.1.7). The three contributions have rather different demands in com-
putational complexity and will be discussed in turn.

9.6.8.2.1 Isotropic HFCs
If the formally singly occupied orbitals do not carry significant 4s character, the
isotropic metal HFCs arise from the subtle spin-polarization mechanisms described
above. In order to describe this spin-polarization accurately (i. e. close to the ba-
sis set limit), it is necessary to use basis sets that are flexible in the core region.
Unfortunately Gaussian functions that are commonly used in electronic structure
calculations have a poor behavior close to the nucleus where they lack the charac-
teristic “cusp” (for a review see [149, 283]). It is then necessary to include primitive
Gaussian orbitals in the basis that have very large exponents in order to mimic the
cusp behavior. Given this, it appears that isotropic HFCs can be well predicted with
Gaussian basis sets. Slater orbitals are better in that the 1s orbitals have the correct
cusp behavior and a finite amplitude at the nucleus and therefore convergence to the
basis set limit should be faster with these basis functions. However, for high-quality
basis sets the difference between the two approaches will vanish. It is important
to point out that the standard basis sets used for quantum chemical calculations
and that are widely available in the commercial packages are not suitable for HFC
predictions because they lack the essential flexibility in the core region. Barone has
standardized basis sets for HFC calculations and these are available for first row
atoms [284]. No basis sets appear to have been standardized for transition metals.

Since the spin-polarization of the core is so important for the accurate predictions
of metal HFCs, spin-restricted wavefunctions can not be used for the prediction
of this property. Unfortunately, the UHF method is known to overestimate the
spin-polarization and therefore to give HFCs that are too negative. Munzarova
and Kaupp have performed a comparison between high-level correlated ab initio
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and DFT methods and have found that DFT in the LDA and GGA variants
underestimates the core polarization and therefore tends to give isotropic HFCs
that are too small in magnitude [131, 285]. Thus, once again, the hybrid density
functionals that mix in part of the HF exchange into the DFT formalism appear to
give an error compensation that adjusts the isotropic HFCs in the right direction.
However, according to Munzarova and Kaupp, there is caveat here that is caused
by the spin contamination [285]. If the spin-polarization is caused by significant
spin contamination (〈S2〉 significantly different from S(S + 1)), the results of the
hybrid DFTs tend to get unreliable. In conclusion, Munzarova and Kaupp in their
study of 21 representative transition metal complexes have not found a density
functional that performs satisfactory for all types of bonding situations. DFT is
nevertheless the method of choice for the prediction of isotropic HFCs due to the
lack of computationally attractive alternatives and its much better performance
compared to HF methods [285]. Indeed, a number of workers have found DFT to
be a useful tool in the calculation of transition metal HFCs [199, 259–261, 268–270,
285–290], If the 4s contribution to the formally singly occupied MOs is significant
more or less all of the presently used functionals give good predictions of isotropic
metal HFCs [285].

9.6.8.2.2 Dipolar HFCs
The anisotropic HFCs depend on the expectation value of the r−3 operator which
becomes large for tight orbitals. Thus, it is also advisable to have flexible basis sets
that describe the tight p- and d-functions. For first row atoms, the 2p orbitals are
valence orbitals and standard basis sets are suitable for dipolar HFC predictions.
For first row transition metal complexes the most important orbitals are the 3d ones
and these have to be described accurately anyway, probably at least with triple-zeta
quality basis sets [291].

It has been widely assumed in the analysis of transition metal HFCs that spin-
polarization is unimportant for the anisotropic HFCs and thus, the anisotropic cou-
plings can be used to estimate the metal contribution to the singly occupied MOs.
However, Belanzoni et al. [260] found a significant effect of spin-polarization to the
dipolar HFCs of TiF3. The same conclusion was reached and analyzed in depth by
Munzarova et al. [285] who point out that the same mechanisms that lead to the
spin-polarization of their 2s and 3s shells will also polarize the 2p and 3p shells.
Since the expectation values over the r−3 operator are one to two orders of magni-
tude larger for the 2p and 3p orbitals than for the 3d orbitals (for example, for the
neutral Mn atom the HF values for 2p, 3p and 3d are 403.03 au−3, 46.58 au−3 and
4.10 au−3 respectively) relatively small spin-polarization contributions from the 2p
and 3p shells can significantly influence the dipolar metal HFCs. The contribution
from the 2p subshell has been estimated to be 5–10% of the total Adip for some
complexes containing Mn [285]. However, the contribution of 3p tends to cancels
the 2p polarization and the net effect is a limited contribution from core polariza-
tion. The valence shell polarization may also influence the dipolar HFCs and will
vary greatly between different systems. So far only limited computational experi-
ence with these effects is available [260, 285]. It appears that they are present and
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should be included in the analysis. While it is unlikely that they will obscure the
ligand field description, they add another complication in the analysis.

9.6.8.2.3 SOC Contributions
Limited experience is available for the SOC contributions to the metal HFCs. The
early work of Geurts et al. [259] used the equations derived by Keijzers and De-
Boer to successfully estimate the effects for [Cu(dtc)2] and the same methodology
was used by Belanzoni et al. to discuss the HFCs in TiF3 [260, 261] as well as by
Noodleman to discuss the properties of 2Fe/2S Ferredoxins [292]. The only gener-
ally available, modern method is the ZORA method of van Lenthe and co-workers
[199]. It has been used in a number of studies and has demonstrated its ability for
the prediction of SOC contributions in a similar way to the g-tensor. Belanzoni
et al. [270] have used this method to obtain insight into the metal HFCs of a se-
ries of 22 small, linear molecules that contain transition metals. The results are in
good agreement with experiment. The calculations highlight the importance of both,
spin-polarization and SOC on the metal HFCs. In addition it is pointed out that
in highly accurate models finite sized nuclei should be employed, at least for the
heavy elements like mercury or gold [270]. Recently, Stein et al. [268, 269] have
used the ZORA method to calculate the SOC contributions to the metal HFCs for
a series of Ni complexes that are designed to mimic the active site of hydrogenases
with mostly encouraging results. The importance of SOC contributions to the metal
HFCs has been stressed in this study. The limitations of the ZORA approach are
the same as for g-tensor calculations – presently it is only available in spin-restricted
form and for a single unpaired electron. However, the necessary generalizations are
said to be under development [199, 268–270]. From the discussion in Section 9.6.4
it is clear that CP-SCF theory is an attractive alternative to the ZORA method, at
least throughout the first transition series were perturbation theory appears to be
satisfactory for the inclusion of SOC. In this case spin-polarization and extension
to all ground state spins S is straightforward [75].

9.6.8.3 Ligand Hyperfine Couplings

Compared to metal HFCs ligand HFCs are somewhat easier to calculate because
the SOC contributions are much smaller. Therefore somewhat more experience is
available for these terms.

The early study of Geurts et al. showed that good agreement with experiment
could be obtained for [Cu(dtc)2] using the Hartree–Fock–Slater (HFS) variant of
DFT [259]. Belanzoni et al. discussed the fluorine HFCs in TiF3 [260, 261] and more
recently reported a study of a series of small transition metal containing molecules
[270]. The ZORA method has been developed and tested by van Lenthe et al. for
HFC calculations [199]. Stein et al. applied this method to predict the HFCs of sev-
eral intermediates in the reaction cycle of Hydrogenases [269] and also reported a
detailed evaluation study on the two Ni complexes [Ni(mnt)2]− and [Ni(H)(CO)3]
[268]. Rather satisfactory agreement with experiment was obtained for HFCs to
1H, 13C, 14N and 33S by using standard GGA functionals and spin polarized, scalar
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relativistic ZORA calculations. More traditional DFT calculations in [Ni(mnt)2]−
were also reported but the basis sets used were not flexible in the core region and
SOC was not considered [289]. It appears that the performance of GGA and hy-
brid density is rather similar in these systems. Knight et al. have reported a rather
detailed experimental as well as HF and DFT study the 17O HFCs in ScO, YO
and LaO [288]. The result given by the B3LYP method compared favorably with
the experimental values while the HF calculations were not successful. In another
recent study Jaszewski and Jezerska have computed HFCs for the blue copper pro-
tein Azurin and its M121Q mutant with the B1LYP hybrid functional [293]. The
agreement for the copper HFC was unsatisfactory because SOC effects have not
been taken into account. The ligand HFCs for the directly coordinating nitrogens
compared favorably with the experimental values with the isotropic values being
slightly underestimated and the dipolar contributions slightly overestimated by the
calculations. The large proton HFCs arising from one of the cysteine Cβ -protons was
predicted too large by a factor of almost two. Smaller nitrogen and proton HFCs
where predicted in qualitative agreement with experiment. These studies consistent
with the well-understood electronic structure of blue copper centers [133, 136–141,
294] and show that quantum chemical calculations can help to understand high res-
olution magnetic resonance experiments [295–299].

9.6.8.3.1 Ligand HFCs in Cu(II) Complexes
A DFT study of 14N HFCs in Cu(II) complexes was recently been reported [290].
Complexes of Cu(II) were chosen because the singly occupied MO is the one that
is most involved in the bonding to the ligand and therefore will most clearly show
the shortcomings of DFT in describing these bonds.

9.6.8.3.2 Breakdown of Ligand HFC Contributions
In the interest of interpreting the calculated HFCs it is instructive to decompose
Eqs. (142) and (143) into several parts:

AA
iso = AA

iso;loc + AA
iso;nonloc (332)

A(A;d) = A(A;d)

1−center + A(A;d)
2−center + A(A;d)

3−center (333)

The local contribution to the isotropic HFC arises from the spin density in the s-
orbitals on atom A and the one-center contribution to the dipolar HFC is due to the
spin-density in the ligand p-orbitals as outlined in Section 9.4.1.7.2. The non-local
correction to the isotropic HFC divides into two parts:

AA
nonloc = AA

nonloc−c f + Anonloc−bond (334)

AA
nonloc−c f = 4π

3S
P A

∑
B �=A

∑
C �=A

∑
µ

B
∑
ν

C Pα−β
µν ϕB

µ ( �RA)ϕC
ν ( �RA) (335)

AA
nonloc−bond = 8π

3S
P A

∑
B �=A

∑
µ

B
∑
ν

A Pα−β
µν ϕB

µ ( �RA)ϕA
ν ( �RA) (336)
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The superscript on the summation indicates that the sum includes only the basis
functions that belong to the indicated atom. The non-local part is divided into a
“crystal-field” contribution involving basis functions are on neighboring atoms and
a “bond” contribution, where only one function is located on another center. The
two-center corrections to the first-order anisotropic part of the nitrogen HFC also
divide into “crystal-field” and “bond” contributions:

A(A;d)
2−center = A(A;d)

2−center;c f + A(A;d)
2−center;bond (337)

where:

A(A;d)
2−center;c f = P A

∑
B �=A

∑
µ

B
∑
ν

B Pα−β
µν 〈ϕB

µ |F̂(RA)|ϕB
ν 〉 (338)

A(A;d)
2−center;bond = 2P A

∑
B �=A

∑
µ

B
∑
ν

A Pα−β
µν 〈ϕB

µ |F̂(RA)|ϕA
ν 〉 (339)

The “crystal-field” contribution arises from the spin density located at remote
atoms. At large distances this term can be presented by a point-dipole approximation
(vide infra). The “bond” contribution arises from the unpaired spin density in the
bonds surrounding atom A. Finally, the three-center terms arise from the spin density
in remote bonds and are given by:

A(A;d)
3−center = P A

∑
B �=A

∑
C �=A,B

∑
µ

B
∑
ν

C Pα−β
µν 〈ϕB

µ |F̂(RA)|ϕC
ν 〉 (340)

This partitioning has been applied in Ref. [290]. A similar partitioning has been
carried out before by Keijzers and Snaathorst and the individual terms were eval-
uated with STO-6G fits to extended Hückel orbitals for [Cu(dtc)2] [300].

9.6.8.3.3 Directly Coordinating Ligands
For directly coordinating ligands one expects the one-center contributions to
dominate the ligand HFCs as was assumed in Section 9.4.1.7.2. The example of
[Cu(NH3)4]2+ is shown in Table 14 [290]. It is observed, that the values are domi-
nated by the one-center parts. However, this result is due to a near cancellation of

Table 14. One, two and three center contributions to the calculated HFCs in [Cu(NH3)4]2+
using the B3LYP functional. (reproduced from Ref. [290]).

AN
iso AN

dip−max AN
dip−mid AN

dip−min
(MHz) (MHz) (MHz) (MHz)

1-Center 34.96 −4.93 −4.95 9.87
2-Center crystal field −0.02 −0.68 −0.53 1.21
2-Center bond 2.76 +0.47 +0.45 −0.91
3-Center 0.06 <0.01 <0.01 <0.01
Total 37.76 −5.09 −5.03 10.12
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the two-center bond and point-charge terms that are of similar magnitude but op-
posite sign. Since the two contributions have a different distance dependence (vide
infra), the cancellation is expected to be system dependent and a 10–20% contri-
bution from two-center terms to the ligand HFC is not unreasonable. Three center
terms are apparently negligible.

9.6.8.3.4 Remote Ligands
It is often found in ENDOR and ESEEM experiments that remote nuclei (in par-
ticular protons) show HFCs even if these nuclei carry no or very little spin density
on their own. In addition, these HFCs are anisotropic even though protons do not
have p-orbitals available that would give dipolar HFCs. The origin of these HFCs
are twofold: (a) very small residual spin densities that give rise to isotropic HFCs
and (b) through space dipolar couplings. The through space dipolar couplings are
the more interesting because they carry geometric information that is the basis of
extracting structural information from ENDOR and ESEEM data. The relation to
the more rigorous theory is made with reference to the partitioning described above.
For protons, both the one-center and the three center contributions to the dipolar
HFCs are negligible. However, the two two-center terms have a rather different dis-
tance dependence. The two-center bond contributions have the two basis functions
located on different centers and therefore these contributions mainly reflect orbital
overlap that decays exponentially with distance. For ligands in the second coordi-
nation sphere or even further these contributions become small. The “crystal-field”
contribution to the dipolar HFCs is, in more detail:

AA
dip−2−cente;c f = P A

∑
B �=A

∑
µ

B
∑
ν

B Pα−β
µν

·
∫

ϕB
µ (r − RB)ϕB

ν (r − RB)F̂(RA)dr (341)

at large distances |RA − RB | it is reasonable to “collapse” the product of the two
orbitals under the integral to a delta-function ϕB

µ (r−RB)ϕB
ν (r−RB) → δµνδ(r−RB)

(point charge approximation). Thereby one gets:

A(A;d)
µν ≈ P A

∑
B �=A

ρB R−5
AB{R2

ABδµν − 3RB A
µ RB A

ν } (342)

where RAB is the distance between centers A and B and RB A = RB −RA. The quan-
tity ρB is the brut spin population on center ρB given by ρB = ∑

µ
B Pα−β

µµ . It is not
the Mulliken spin population since these would contain overlap terms. Consequently∑

B ρB �= 1. In addition, one frequently finds expressions for the point dipole ap-
proximation that incorporate the molecular g-values. However, these expressions
do not follow easily from the general theory of HFCs. The numerical performance
of the point dipole approximation is shown in Fig. 17, where the “crystal-field” con-
tribution to the zz-component of the HFC of a proton located along the positive
z-axis of a unit spin density spin-carrying center. It is observed that the point dipole
approximation fails badly for small distances where it diverges whereas it gives a
fairly good approximation to the exactly evaluated HFC at distances larger than



9.6 Computational Approaches to SH Parameters 453

0 1 2 3 4 5 6 7 8
-300

-250

-200

-150

-100

-50

0

50  exact
 point dipole approximation

P
<

1s
|F

zz
|1

s>
 (

M
H

z)

R (Angström)

2 3 4 5 6 7
-20

-15

-10

-5

0

 

 

 

Fig. 17. Comparison of the point dipole approximation to exactly evaluated “crystal-field”
contributions to the HFC of a proton located along the positive z-axis of a center that
carries a unit spin density. The 1s orbital of the hydrogen was approximated by a single
Slater orbital with exponent 1.2.

2 Angstrøm. Thus, the point dipole approximation will be unreliable for protons
directly bound to spin carrying centers but allows reliable estimates of distances of
more distant protons.

9.6.8.3.5 Covalency
The results of the study show that the HF method largely underestimates the ligand
HFCs which can be traced back to a bonding description which is far too ionic. For
example, for [Cu(NH3)4]2+, the HF method predicts a spin density on the copper
of ≈90% which is far too high based on the combined analysis of optical spectra,
g-values, metal HFCs and ligand HFCs. The GGA functionals were found to over-
estimate the ligand HFCs and this has been taken as further evidence for the com-
monly held believe that the GGA functionals tend to overestimate the covalency of
metal–ligand bonds. The best results were found for hybrid density functionals that
appear to lead to error compensation. While either the hybrid or GGA functionals
predict reasonably accurate values for the isotropic HFCs, all density functionals
overestimated the dipolar ligand HFCs by about a factor of two. This result can
be clearly seen in Fig. 18. Either hybrid or GGA functionals predict the isotropic
HFCs in a series of Cu(II) complexes with nitrogen donors within a few MHz of
the experimental values. Both types of density functionals significantly overestimate
the dipolar couplings (A(N ;d)

max − A(N ;d)

min ) with the GGA functionals being worse than
the hybrid functionals.
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Fig. 18. Comparison of theoretically calculated and experimental ligand HFCs in a series of
Cu(II) complexes. A gradient corrected (BP86) and a hybrid (B3LYP) density functional
were used. (A) isotropic HFCs, (B) dipolar HFCs. Abbreviations used for ligands – NH3
= ammonia, gly = glycine, en = ethylenediamine, iz = imidazole, py = pyridine.

This result has been attributed to a spin-polarization of the valence shell that
is too low and a spin density on the ligands that is too high [290]. Spin density in
the out-of-plane ligand orbitals will tend to cancel the direct sigma contribution to
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the HFCs and will thereby reduce the observed anisotropy of the HFCs. This is,
however, precisely what is observed experimentally, where for example Scholl and
Hüttermann in their ENDOR study of [Cu(imidazole)4]2+ did not find significant
anisotropy in the 14N-HFC tensor [301].

9.6.8.3.6 SOC Contributions
Scalar relativistic and SOC contributions to the ligand HFCs have also been eval-
uated and were both found to be negligible (<1 MHz) [290]. This is in qualitative
agreement with the results of Stein et al. who found limited contributions from SOC
to the HFCs of light ligand nuclei while they may become discernible for second-
and third-row atoms [268, 269] that form highly covalent bonds to the metal, such
as is the case for sulfur.

9.7 Concluding Remarks

In this review we have tried to provide a rather detailed and self-contained overview
of the origin of spin Hamiltonian parameters in transition metal complexes. The
treatment started from a fairly general point of view with many electrons wave-
functions and was simplified up to the point where the ligand field expressions were
obtained. We hope that in this process it became evident which approximations have
to be introduced in order to arrive at these expressions and in which way they have
to be generalized in more detailed treatments. It is also evident that ligand field
theory forms a firm basis for understanding most of the general features of SH
parameters in transition metal complexes. However, the numerical predictions of
ligand field theory may not be highly accurate due to the crudeness of some of the
approximations made, especially in the treatment of anisotropic covalency.

We have then proceeded to several case studies for which detailed experimental
results are available and have stressed the impact of excited state data for getting
insight into the observed ground state magnetic properties. In particular, excited
state methods offer the information necessary to invert the underdetermined ligand
field equations for covalency parameters. In addition excited state methods feature
independent selection rules that are also related to metal–ligand covalent bonding
and thereby complement the ground state magnetic resonance methods.

Finally we have outlined the present state of the art of first principle computa-
tional methods for predicting SH parameters in transition metal complexes. While
it appears that the general theory of SH parameters is fairly well understood, the
goal of predicting these parameters with high accuracy (i. e. comparable to exper-
iment) has only partially been met. However, the existing methods do provide a
highly useful complement to experiment, in particular for hyperfine couplings. In
addition, new methods are rapidly emerging and there are good reasons to be op-
timistic about the future of SH calculations.

The development of these methods is important to critically evaluate the validity
of the bonding descriptions provided by the calculations. If the agreement between
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calculation and experiment is good, one can have confidence that the calculated
bonding scheme is also reasonable and can then be used to obtain insight into the
electronic structure and reactivity of short lived intermediates along a given reaction
coordinate.

9.8 Appendix: Calculation of Spin–Orbit Coupling Matrix Elements

According to the discussion in Section 9.3.2.2 it is customary to write the spin–orbit
coupling operator in molecules as an effective one electron operator:

ĤSO =
∑
A,i

ξ(rAi )�lA(i)�s(i)

=
∑

p=x,y,z

∑
A,i

ξ(rAi )lA,p(i)sp(i) (343)

=
∑

m=0,±1

(−1)m
∑
A,i

ξ(rAi )lA,−m(i)sm(i)

where ri A = |�ri − �RA|, the distance of the ith electron to nucleus A. As the total
spin is given by the sum over the individual spins of all electrons (�S = ∑

i �s(i)) and
spin operators for different electrons commute ([�s(i), �s( j)] = 0, for i �= j) it follows
that each �s(i) is of “type T” [90] with respect to the total spin �S.

[Sx, sx ( j)]=0 [Sx, sy( j)=+i�sz( j)] [Sx, sz( j)]=−i�sy( j)
[Sy, sx ( j)]=−i�sz( j) [Sy, sy( j)=0] [Sy, sz( j)]=−i�sx ( j)
[Sz, sx ( j)]=+i�sy( j) [Sz, s − y( j)]=−i�sx (i) [Sz, sz( j)]=0

(344)

This leads to a replacement theorem:

〈αSM |Sm |α′S′M ′〉 =
(

S′ 1
M ′ m

∣∣∣∣ S
M

)
〈αS||S||α′S′〉 (345)

〈αSM |sm(i)|α′S′M ′〉 =
(

S′ 1
M ′ m

∣∣∣∣ S
M

)
〈αS||s||α′S′〉 (346)

If both matrix elements are non-zero the ratio of the two equations can be taken
and rearrangement leads to:

〈αSM |sm(i)|α′S′M ′〉 = 〈αSM |Sm |α′S′M ′〉 〈αS||s||α′S′〉
〈αS||S||α′S′〉

= 〈αSM |Sm |α′S′M ′〉γ (347)

where γ is a constant. For the present purpose a slightly more powerful form is
required. the Wigner–Eckhard theorem [23, 24] for vector operators can be applied
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to an operator of the form
∑

i f (i)sm(i) to yield:〈
αSM

∣∣∣∣ ∑
i

f (i)sm(i)

∣∣∣∣α′S′M ′
〉

=
(

S′ 1
M ′ m

∣∣∣∣ S
M

) 〈
αS

∣∣∣∣ ∑
i

f (i)

∣∣∣∣α′S′
〉

(348)

This equation is valid because every sm(i) is proportional to Sm and this in turn is
proportional to the Clebsch–Gordon coefficient. The reduced matrix element can
be calculated for any convenient choice of m.

Equation (348) finally allows the matrix elements for the spin–orbit coupling
operator (343) to be written as:〈

αSM

∣∣∣∣ ∑
m

(−1)m
∑
A,i

ξ(rAi )lA,−msm

∣∣∣∣α′S′M ′
〉

=
∑

m

(−1)m
(

S′ 1
M ′ m

∣∣∣∣ S
M

) 〈
αS

∣∣∣∣ ∑
A,i

ξ(rAi )lA,−m

∣∣∣∣α′S′
〉

(349)

≡
∑

m

(−1)m
(

S′ 1
M ′ m

∣∣∣∣ S
M

)
Y αα′

SS′ (−m)

The remaining task is now to calculate the reduced matrix elements Y αα′
SS′ (−m).

The selection rules contained in the Clebsch–Gordon coefficients requires that three
different types of matrix elements are to be calculated for S′ = S, S + 1 and S − 1.
In theory we can chose any convenient combination of M , M ′ and m. However, the
practical setup of the calculations put some constraints on the choices.

For S′ = S we will always have the function for M = M ′ = S and choose m = 0.
Hence: 〈

αSS

∣∣∣∣ ∑
A,i

ξ(rAi )lA,−m(i)s0(i)

∣∣∣∣α′SS

〉
=

(
S 1
S 0

∣∣∣∣ S
S

)
Y αα′

S (−m)

= S√
S(S + 1)

Y αα′
S (−m) (350)

and inversion yields:

Y αα′
S (m) =

√
S(S + 1)

S

〈
αSS

∣∣∣∣ ∑
A,i

ξ(rAi )lA,m(i)s0(i)

∣∣∣∣α′SS

〉
(351)

For the matrix elements with S′ = S + 1 we will have the states |α′S + 1S + 1〉
available, a natural choice is M = S, M ′ = S + 1 and m = −1. This gives:〈

αSS

∣∣∣∣∑
A,i

ξ(rai )lA,−m(i)s−1(i)

∣∣∣∣α′S + 1S + 1

〉
=

(
S + 1 1
S + 1 −1

∣∣∣∣ S
S

)
Y αα′

SS+1(−m)

=
√

(2S + 1)

(2S + 3)
Y αα′

SS+1(−m) (352)
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Inversion results in:

Y αα′
SS+1(m) =

√
2S + 3
2S + 1

〈
αSS

∣∣∣∣ ∑
A,i

ξ(rAi )lA,m(i)s−1(i)

∣∣∣∣α′S + 1S + 1

〉
(353)

Likewise one obtains the matrix elements:

Y αα′
SS−1(m) =

〈
αSS

∣∣∣∣ ∑
A,i

ξ(rAi )lA,m(i)s+1(i)

∣∣∣∣α′S − 1S − 1

〉
(354)
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[92] J Bendix, M Brorson, CE Schäffer (1993) Inorg. Chem., 32, 2838.
[93] A Lupei, JA McMillan (1972) J. Chem. Phys., 57, 827.
[94] NM Atherton, AJ Horsewill (1980) J. Chem. Soc., Faraday Tans., 76, 660.



References 461

[95] R Sheahan, B Hathaway (1979) J. Chem. Soc., Dalton Trans., 17.
[96] DW Smith (1970) J. Chem. Soc. A, 3108.
[97] J Ammeter (1968) Chimia, 22, 469.
[98] F Neese (2001) J. Chem. Phys., 115, 11080.
[99] J Ammeter, G Rist, HH Günthard (1972) J. Chem. Phys., 57, 3852

[100] CK Jørgensen (1962) Orbitals in Atoms and Molecules, Academic Press, London,
NewYork.

[101] CK Jørgensen (1963) Adv. Chem. Phys, 33.
[102] CK Jørgensen (1966) Struc. Bond, 1, 3.
[103] CK Jørgensen (1969) Struc. Bond, 6, 94.
[104] RL Belford, M Karplus (1959) J. Chem. Phys., 31, 394.
[105] JHE Griffith, J Owen (1954) Proc. Roy. Soc. (London), A 205, 96.
[106] KK Stavrev, MC Zerner. (1997) Int. J. Quant. Chem., 65, 877.
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10 Chemical Reactions in Applied Magnetic Fields

Quentin A. Pankhurst and Ivan P. Parkin

10.1 Introduction

Research in the last ten years has highlighted the dramatic influence that magnetic
fields can have on chemical reactions in gases, liquids and solids. In the gaseous
state, magnetic fields improve the combustion process in various engines, probably
by influencing the behavior of dioxygen. An external field can also affect the shape
and distribution of fullerenes and carbon nanotubes synthesized by arc-discharge. In
the liquid state a magnetic field can influence the population balance of opposing-
chirality organic molecules. It can also affect the phase and morphology of elec-
trodeposited phases, such as the handedness of spirals of copper crystals. In the solid
state, and in particular in solid flame combustion reactions, applied fields can modify
both reaction pathways and product compositions, as well as a host of structural and
magnetic properties ranging from lattice parameters to saturation magnetizations.

It is a remarkable fact that despite the ubiquity and profundity of these observa-
tions of definite, measurable effects, there remains in many cases little in the way
of understanding their origins – even to the extent of uncertainty about whether
the field influences the reactions directly or indirectly. In this review we present an
overview of current research in this fascinating and challenging area.

10.2 Gas-phase Reactions

10.2.1 Gaseous Combustion

Combustion reactions are well known to be influenced by electric fields [1]. Less
work has been published on the effect of magnetic field on gaseous combustion
reactions. Michael Faraday was the first to report the effect of an external magnetic
field gradient on a candle flame [2]. He found that the fuel gas flowed towards a
stronger magnetic field and the candle flame was deflected towards a weaker field.
Furthermore, he found that the diamagnetic gases hydrogen and nitrogen make a
detour around magnetic poles in air while paramagnetic gases such as oxygen are
attracted toward the stronger fields. More recently, magnetic field gradients have
also been found to have a considerable effect on advancing gas streams in air, and
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it has been shown that the magnetic force per unit volume is:

F = 1
2

PO2χO2∇ H2 (1)

where χO2 is the magnetic susceptibility of oxygen gas, PO2 is the oxygen partial
pressure, and H is the magnetic field strength [3].

Flames can be categorized as ‘diffusion’, ‘partially mixed’ or ‘premixed’ flames,
depending on the origin of the oxygen source. In diffusion flames the oxygen sup-
plied to the flame is provided by diffusion from the surrounding air. The combus-
tion in such flames is greatly altered in the presence of an external magnetic field.
Wakayama [4] has studied this effect, and shown that for methane/oxygen flames ap-
plication of an external field immediately made the flame shorter in length, sharper
and more brilliant (Fig. 1). The flame temperature increased while the magnetic
field was in place but decreased once the magnetic field was removed, returning
to its original burning pattern. The flame temperature was found to vary almost
linearly with magnetic field gradient changing from 790◦C at zero field to 900◦C
in a gradient of 40 T2 m−1. The magnetic field promoted combustion when the fuel
gas flowed in the direction of decreasing field strength. Magnetic acceleration of
combustion was found only in diffusion or partially mixed flames and not premixed
flames (air/methane). This indicates that magnetically induced air-flows promote
combustion in diffusion flames.

Zero field Applied field

Fig. 1. Comparison of diffusion flames in zero field and in an homogeneous magnetic field
with a gradient of 35 T2 m−1.

10.2.2 Carbon Nanotube and Fullerene Synthesis

Carbon nanotubes are long microtubules of carbon atoms [5]. They comprise nested
cylinders of carbon sheets, of typical dimension 200 nm long by 5–50 nm wide. The
nanotubes have an inter-wall separation of 0.34 nm that is comparable to that found
in graphite. The cylindrical carbon sheets form a series of concentric cylinders and
have been described as a series of ‘Russian dolls’. Carbon nanotubes are synthesized
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by dc-arc discharge using carbon rods in a partial vacuum containing helium [6].
The carbon nanotubes are found in the soot-like material that forms at the cathode.
In the same process a series of fullerene molecules such as C60 and C70 are also
isolated. Yokomichi has studied the formation of nanotubes and fullerenes in mag-
netic fields up to 10 T [7]. The magnetic field was found to greatly change the yield
and morphology of the nanotubes and also to affect the abundance of the fullerene
molecules.

The principal finding of Yakomichi’s work was that the carbon nanotubes formed
at 10 T had greater curvature than those synthesized in zero field (Fig. 2). The nan-
otubes were also found to have a collapsed core, and the nanotube yields decreased
with field strength. The nanotubes that did form at high fields tended to have thin-
ner walls than those synthesized in zero fields (less nested carbon sheets). Another
important result was that the ratio of C60 to C70 isolated in the experiment was
found to vary with magnetic field. The fullerene yield decreased by an order of
magnitude on the application of an external magnetic field. Interestingly, under
conventional zero field synthesis, C60 makes up the dominant fullerene synthesized
by arc discharge, ca. 90%. The ratio of C70 fraction increases steadily with external
field strength such that at 5 T the proportion of C70 isolated is greater than that of
C60. These effects have been tentatively explained on the basis of broadening and
deformation in the discharge column due to gradients in ion density. The effect has
thus been ascribed to plasma confinement in the magnetic field and the subsequent
alteration of the arc-current density rather than spin polarization or Zeeman effects.
The authors believe that a high magnetic field may enable control of the curvature
of nanotubes and selective synthesis of fullerenes [7].

Fig. 2. Transmission electron micrograph of car-
bon nanotubes made in a magnetic field of 10
T, showing that nanotubes with a large amount
of curvature can be obtained when synthesis is
performed in an applied field.
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10.2.3 Liquid-phase Reactions

10.2.4 Asymmetric Synthesis

It has been widely reported that magnetic fields can affect the mechanisms and rates
of reactions, and the subject has been reviewed for both biological and chemical
processes [8, 9]. One aspect of this question that has been plagued by controversy,
fraud and frequent misunderstanding is whether an external magnetic field can in-
duce chirality (or, more precisely, ‘enantiomeric excess’) in a reaction.

Much of the natural world is chiral [10]. Chirality is a phenomenon arising from
the handedness of molecules at an atomic center. It is most commonly found in
organic chemistry in cases where a carbon atom has four different groups attached.
The carbon atom is defined as chiral and can exist in one of two forms which have
been classified variously as R or S, D or L , + or −, or d or l (exact definitions of these
forms are given elsewhere [11]). These chiral centers have two possible configura-
tions, either right or left handed, with the two different forms of the same molecule
being known as ‘enantiomers’. Enantiomers have exactly the same chemical ac-
tivity except when they react with other chiral molecules. In that case significant
increases in rates of reaction are often observed between different enantiomers,
leading to enhancement in the products with one particular handedness – the so-
called enantiomeric excess or e. e. of the reaction [12]. Enantiomers also show a
further difference in that that they rotate the plane of polarized light in different
directions, a phenomenon that has been used in the study of reactions via tech-
niques such as polarimetry, circular dichroism and optical rotatory dispersion [13].
The key point to note is that enantiomeric excess in chemical reactions can only be
induced by the presence of other chiral molecules [13].

Field-induced enantiomeric excess was first investigated over 100 years ago by
Pasteur [14]. Pasteur reasoned that as a magnetic field can cause optical rotation
through the Faraday effect [15], the asymmetric influence of the field, he reasoned,
was similar to that induced by chiral molecules. Hence the two phenomena were
probably interrelated and an external magnetic field should be able to influence the
enantiomeric excess in a reaction. However, despite intensive effort no proven link
could be established. Indeed this link has caused some confusion even to today. The
Faraday effect and optical rotation observed from a collection of chiral molecules
are in fact different phenomena [16]. The quantum states for chiral rotation and
the Faraday effect are fundamentally different. Chiral induction requires quantum
states of mixed parity but definite reversibility, whereas the Faraday effect has states
of definite parity but mixed reversibility [17].

In 1994 Eisenbraun et al. claimed that an external magnetic field of 1.2 T was
sufficient to induce enantiomeric excesses of 98% and 67% in certain chemical re-
actions [18]. This remarkable result generated intense interest in the chemical com-
munity, as the control of enantiomeric excess in chemical reactions up to that time
could only be invoked by the use of expensive chiral reagents. The result promised
to revolutionize the synthesis of natural products in chemistry and lead to much
faster production of important drugs. However, the enantiomeric excesses found in
Eisenbraun’s experiments could not be duplicated by other research groups [19, 20].
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After careful detective work it was found that G. Zadel, one of the workers in the
original experiment, was guilty of manipulating the results by adding chiral product
to the reactions. Despite this case of scientific fraud, combined external electric and
magnetic fields have been theoretically shown to produce a minimal chiral induc-
tion effect of the order of 10−5 [21]. Other reports, as yet unsubstantiated, have
shown that chiral induction of the order of 1% can be obtained [22].

10.2.5 Electrodeposition

Far more obvious and measurable field effects have been reported in electrode-
posited films. Coey has studied the effects of an external magnetic field on electro-
chemical metal deposition [23]. He found that a uniform magnetic field unexpectedly
alters the form of copper deposits grown in a flat electrochemical cell (Fig. 3). The
patterns of the electrodeposit change substantially in nature depending on the ori-
entation of the cell and the external field. The electrodeposits can be categorized by
their fractal dimension and apparent chirality. Coey’s work builds on earlier reports
that state that fields in the range of 1 T could influence the rate of deposition of a
metal in simple redox reactions, although it should be noted that no mechanism had
then (or since) been established [24, 25]. Speculation had focused on the hypothesis
that the field alters ion concentration near an electrode surface or that convection
currents were enhanced by the Lorentz force acting on charged species in solution.

Coey’s work showed that the morphology of copper electrodeposits formed from
CuSO4 solution was critically dependent of field orientation (Fig. 3). In a flat cell
radial growth of copper in zero field showed a dense growth pattern. When an
applied magnetic field was applied perpendicular to the plain of the cell a branching
spiraling pattern was observed. If the field direction was inverted the chirality of
the electrodeposit was in exactly the reverse sense. If the magnetic field was applied
parallel to the plane of the cell string-like deposits were noted. The experiments
were repeated on a number of occasions and in every experiment the form of the
electrodeposit was a function of the applied magnetic field.

The origin of this effect is thought to derive primarily from a field-dependence
of the rate of transport of ions to the surface of the working electrode [25]. In
the vicinity of the electrode the net current density associated with ion transport
through the solution can be large enough so that the Lorentz force acting on it
becomes comparable to the gravitational force, thereby providing a mechanism by
which to influence convection.
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Zero field Vertical (downwards) field

Vertical (upwards) field Horizontal field

Fig. 3. Electrodeposited copper particles obtained in a horizontal cell, in zero field and in
horizontal or vertical fields of 1 T.

10.3 Solid-phase Reactions

10.3.1 Self-propagating High-temperature Synthesis (SHS)

In the last few years there has been a major upsurge in research activity into the
effect of magnetic fields on solid phase chemical reactions. This work has focused on
a particular family of reactions – the ‘self-propagating high-temperature synthesis’
(SHS) reactions – all of which involve highly exothermic solid state combustion
processes [26]. The best known examples are the thermite reaction that is used to
weld railway tracks:

Fe2O3 + 2Al → 2Fe + Al2O3 (2)
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and the Goldsmidt reaction:

Cr2O3 + 2Al → 2Cr + Al2O3 (3)

that is used commercially to produce chromium metal.
Commonly, SHS reactions use the elements or element oxides as the starting

materials, with M + E transforming to ME, where M is a metal or metal oxide and
E is a non-metal. The reactions can be started by point source initiation, where a
hot wire or filament is brought into contact with the green mixture, igniting the
powder. A synthesis wave or thermal flash moves through the solid, promoting the
reaction of successive layers of powder – as illustrated in Fig. 4. The synthesis wave
is extremely hot (often more than 1200◦C), is highly directional (away from the
source of ignition), and has a uniform velocity.

Although the prototypical SHS reactions – the thermite and Goldsmidt reactions
– have been known for over a hundred years, it was only in 1986 that the first re-
port appeared of an SHS reaction performed in an applied magnetic field [27]. This
study dealt with the SHS of titanium carbide, and reported an increased reaction
rate and reaction temperature in the applied field. In 1994 a second paper was pub-
lished, reporting similar enhanced reaction rates and temperatures in the synthesis
of strontium hexaferrite SrFe12O19 [28]. Since then many reports have been pub-
lished on SHS reactions in applied fields, especially with regard to the formation
of ferrites [29–38], and a variety of different effects have been identified. These
include observations of increased reaction temperature and propagation velocity;
differences in phase compositions and microstructures in post-SHS products; and
differences in structural and magnetic properties in post-annealing products, such
as changes in coercivity, magnetization, Curie temperature, atomic site occupancy
and site inversion, and cationic homogeneity.

An important feature of these reactions that has only recently come to light is that
the passage of the wave induces an electrical pulse [39] and/or a small magnetic field
[40], both of which are thought to be caused by the movement of ions and electrons
at the molten reactant front. The latter ‘chemomagnetic fields’ have been observed
in reactions involving both non-magnetic reactants and products, for example:

BaO2 + 0.4Ti + 0.6TiO2 → BaTiO2 (4)

with a maximum field of 6.5 nT (at a point 10 mm from the reaction front) measured
by SQUID magnetometry [40]. They have also been observed for reactions involving
magnetic products, including the thermite reaction (Fig. 5), which gave a maximum
field of 4.6 nT [40].

The fact that such electrical and magnetic phenomena can be attributed to the
combustion wavefront itself is significant in that it gives a possible clue to the ori-
gins of the observed field effects. In this context we now review the published data
that has been accumulated on applied field SHS reactions in the ferrite family of
hard and soft magnets. In particular we focus on macroscopic effects evidenced by
experiments conducted in large magnetic fields (of up to 20 T) and on short-lived
structural effects evidenced by time-resolved X-ray diffraction experiments.
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Ignition by hot wire: t = 0 Solid flame ignites: t = 0.5 s

Flame propagates: t = 1.0 s Flame propagates: t = 1.5 s

Flame complete: t = 2.0 s Pellet cooling: t = 2.5 s

Pellet cooling: t = 3.0 s Reaction complete: t = 3.5 s

Fig. 4. Self-propagating synthesis wave moving through a 13-mm diameter pellet of MgO,
ZnO, Fe, Fe2O3, and NaClO4 under a flow of oxygen gas.
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Fig. 5. Magnetic signal measured by means of
a SQUID magnetometer placed 10 mm from
the reaction wavefront of the SHS thermite re-
action, Fe2O3 + 2Al → 2Fe + Al2O3.

10.3.2 SHS Reactions in High Fields (1 to 20 T)

The effect of magnetic fields on the preparation via SHS of both hard and soft
ferrite magnets was first explored in University College London in 1997. Ferrite
production by SHS is a two-step process, illustrated below for the M-type ferrite
BaFe12O19:

BaO2 + 6Fe + 3Fe2O3 + 4O2
SH S−→ aFe + bFe2O3 + cFe1−xO + dFe3O4 + eBaFe2O4
anneal−→ BaFe12O19 (5)

The first step is the SHS reaction step, which results in an intimately mixed prod-
uct comprising a number of phases, sometimes including a small proportion of unre-
acted reagents. The second step is a grind-and-anneal step carried out at a relatively
low temperature, typically ca. 1200◦C, for a relatively short time, typically ca. 2 h,
after which a single-phase product is obtained.

Comprehensive studies of the hard ferrites BaFe12−x Crx O19 [33, 34, 41] and the
soft ferrites Li0.5Fe2.5−x Crx Fe2O4 [29, 34] and Mg0.5Zn0.5Fe2−x Crx O4 [30, 41] re-
vealed that in a field of 1.1 T the SHS reactions proceeded faster and had higher
combustion temperatures than the corresponding zero field reactions. The applied
field also resulted in changes to the bulk magnetic properties of the ground and sin-
tered end-products, compared to those made either by zero field SHS or ceramic
methods. These changes included a 20% decrease in coercivity in BaFe12O19, and a
magnetization increase of 15% in MgFe2O4 and 35% in Mg0.5Zn0.5Fe2O4 [30, 34].
Incorporating chromium into the samples modified these results, with the coercivity
change in BaFe12O19 rising to almost 100% for BaFe10Cr2O19 [34]. The unit cell
volumes of the sintered end-products were also modified, with a 0.14% reduction
in MgFe2O4, a 0.75% reduction in LiFe5O8, and a 0.22% expansion in BaFe12O19
[30, 34].

Subsequent experiments on SHS reactions of BaO2, Fe and Fe2O3 (Eq. 5) in
fields of up to 20 T yielded further new results [37], including the observation of
two macroscopically distinct parts in the post-SHS product, one having a shiny ap-
pearance, the other a matt appearance (Fig. 6). The amount of shiny phase formed
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6 T 15 T

Fig. 6. The as-made products (17-mm diameter pellets) of SHS reaction of SrO2, Fe, and
Fe2O3 in large, steady-state applied fields.

increased as the applied field strength increased. The shiny and matt parts had differ-
ent phase compositions, microstructures and magnetic properties. The shiny parts
were more fully combusted than the matt parts, with the latter having a greater
proportion of unreacted starting mixture. This result shows that the applied field
has a direct influence on the combustion process itself, and that higher fields pro-
mote more complete combustion – an observation that correlates with the observed
hotter and faster nature of the SHS wave propagation. The microstructures of the
shiny and matt parts were found to be significantly different, with the latter closely
resembling that found in zero field reaction products (Fig. 7). Acicular grains of
order 100–300 µm long and 10–20 µm wide appeared in the shiny parts only, while
the matt parts had a random distribution of components. The acicular grains were
deduced via electron probe analysis and X-ray diffraction to comprise fine scale
mixtures of BaFe2O4 and Fe3O4 [35–37].

The structural properties of the monophase BaFe12O19 samples obtained after
annealing also showed a memory of the field applied during SHS. Differences were
seen in lattice parameters, up to a maximum of an 0.5% reduction in cell volume
BaFe12O19 annealed from the shiny part of the 15 T reaction [37].

10.3.3 Time-resolved X-ray Diffraction Studies

To better understand the effect of an applied field on the very rapid SHS reac-
tions, it is desirable to obtain high quality, relevant data that can be obtained on
the time-scale of a second or less. Research in the last five years in France and the
US has shown that an excellent method for such a purpose is time-resolved X-ray
diffraction (TRXRD) using synchrotron radiation. Experiments at LURE in Or-
say on the formation of Al–Ni–Ti intermetallic compounds [42], and at Brookhaven
on the reaction Ta + C → TaC [43], have shown kinetic features and intermediate
phases that are only revealed given the 50–100 ms timing resolution possible with
a synchrotron source.



10.3 Solid-phase Reactions 477

————

50 µm

Zero field

————

100 µm

Applied field 1.1 T

Fig. 7. Electron microprobe compositional maps of the product of the SHS reaction of BaO2,
Fe, and Fe2O3 under oxygen, in zero field and in a magnetic field of 1 T. Gray-scale mapping
shows regions of higher iron content as darker features.

However, these experiments were performed in zero field. The first TRXRD
experiments on applied field SHS reactions were performed by the UCL group
in 1999 [35, 44]. TRXRD scans were recorded on both hard and soft ferrites, in
zero field and in an applied field of 1.1 T, on time-scales down to 0.1 s measurement
time, interspersed with data readout times of ca. 1.0 s. Very rapid structure and
phase changes were observed (Fig. 8). In a series of experiments on BaFe12O19,
LiFe5O8 and Mg0.5Zn0.5Fe2O4 first-step SHS reactions, intermediate phases were
observed only in applied field reactions, and not in the corresponding zero field
reactions. Attention was focused on the BaFe12O19 reaction, where Fe3O4 was seen
in four of five cases to be a dominant transient intermediary (see Figure 8), while no
intermediate phase at all was observed in any of eight different scans of the zero field



478 10 Chemical Reactions in Applied Magnetic Fields

18

11

15

14

17

Zero Field

16

13

12

0 20 40 60 80 100 120
Energy (keV)

Post-SHS

Pre-SHS

50

10

9

8

7

6

5
4

3

2
1

40
30

20
15
12
11

Applied Field

Fig. 8. Time-resolved X-ray pow-
der diffraction patterns of the
SHS reaction of BaO2, Fe, and
Fe2O3 under an oxygen atmo-
sphere and in a magnetic field
of 1 T. Scans were each recorded
for 0.25 s, with a read-out time of
1.25 s. Scan numbers are as noted
on the figure.

reaction. The scans in Figure 8 show that at the onset of the SHS wave the diffraction
pattern becomes diffuse (scan 4). A strong peak due to the (111) reflection for Fe3O4
dominates scans 7–10. After the passage of the combustion wavefront, the product
cools and the X-ray patterns tend towards those of the post-SHS product (scan 20
and beyond).

These results show that the applied field is directly influencing the combustion re-
action pathways themselves, and is not simply speeding up or enlarging the reaction
wavefront.
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10.3.4 Possible Field-dependent Reaction Mechanisms

There is as yet no consensus in the literature regarding the mechanism by which
an applied magnetic field can influence the SHS combustion wave. There has been
some speculation that there would be a field-induced rearrangement (alignment
or texturing) of the powder reactants that could allow a more efficient surface-to-
surface reaction pathway through the reactant mixture. However, this hypothesis
fails to account for the high field experiments on pressed pellets, in which it would
have been impossible for the reagents to move, and where field-dependent effects
were still observed [37].

Another possibility is that the availability of oxygen is the determining aspect
of the reaction, and that more oxygen brings hotter reaction temperatures. This
view is supported by recent work on the BaFe12O19 reaction in air and in various
oxygen-flow atmospheres (as well as in the presence of an internal oxidizing agent),
where the more oxygen-rich reactions burned hotter and faster, went further to
completion, and in some cases gave rise to the acicular microstructure previously
seen only in applied field reactions [45]. However, this raises again the question of
how the applied field can affect the flow of oxygen, or its availability, at the reaction
wavefront – an aspect which intriguingly has echoes of the effect of fields on gaseous
combustion discussed in Section 10.2.1.

A third possibility arises from the evidence [39, 40] that the SHS wavefront con-
stitutes a moving electrical and magnetic pulse generated by the motion of charged
and mobile ions at the high-temperature heart of the SHS wave. Given this, it may
be reasonable to suppose that the applied field could directly influence the ions and
their motion and/or energetics at the wavefront, thereby enhancing the combustion
process. This, however, is a highly speculative suggestion, and one that requires
further theoretical exploration. Nevertheless, it serves to illustrate that the mecha-
nisms by which these applied field effects arise are still far from being well under-
stood.

10.4 Conclusions

Recent progress in studies of the effect of applied magnetic fields on chemical re-
actions have uncovered a wealth of intriguing phenomena in three states of mat-
ter – gases, liquids and solids. In each case it is clear that our current understand-
ing of the mechanisms and physical processes at work is still limited. Neverthe-
less it is equally clear that our ability to probe and measure these effects is im-
proving and yielding increasingly valuable and relevant data. The prospects for fu-
ture work in this area are positive, especially given that in many cases there are
strong technological potentials waiting to be exploited in the use of applied mag-
netic fields to not just influence but also to control a wide range of chemical reac-
tions.
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